Engineering Statistics

STATISTICAL FORMULAE

- 1. For X having the Binomial distribution, B(n, p): $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$, for k = 0, 1, 2, ..., n and X has mean np and variance np(1-p).
- 2. For Y having the Poisson distribution, parameter λ : $P(Y = k) = \frac{e^{-\lambda} \lambda^k}{k!}$, for k = 0, 1, 2, ... and Y has mean λ and variance λ .
- 3. For the sample x_1, x_2, \dots, x_n , the sample mean is $\overline{x} = \sum_{i=1}^n x_i / n$ and the sample variance is $s^2 = \sum_{i=1}^n (x_i \overline{x})^2 / (n-1) = \left(\sum_{i=1}^n x_i^2 n\overline{x}^2\right) / (n-1)$.
- 4. Observations $x_1, x_2, ..., x_m$ occur with frequencies $f_1, f_2, ..., f_m$, the sample mean is $\overline{x} = \frac{\sum_{i=1}^{m} f_i x_i}{n}$ and the sample variance is $s^2 = \frac{\sum_{i=1}^{m} f_i (x_i \overline{x})^2}{n-1} = \frac{\sum_{i=1}^{m} f_i x_i^2 n\overline{x}^2}{n-1}$.
- Random sample $X_1, X_2, ..., X_n$ from a N(μ , σ^2) distribution, then $\frac{\overline{X} \mu}{\sqrt{\sigma^2/n}}$ has a N(0, 1) distribution and $\frac{\overline{X} \mu}{\sqrt{s^2/n}}$ has a t_{n-1} distribution.
- 6. B(n, p) is approximated by N(np, np(1-p)), when n is large and np is not too close to 0 or n. Poisson, λ , is approximated by N(λ , λ), when λ is large.
- 7. The linear regression line is estimated by $y = \hat{a} + \hat{b}x$ where $\hat{b} = S_{xy} / S_{xx}$, $\hat{a} = \overline{y} \hat{b}\overline{x}$, $\hat{\sigma}^2 = \frac{S_{yy} \hat{b}S_{xy}}{n-2}$, $S_{xx} = \sum x_i^2 \frac{\left(\sum x_i\right)^2}{n}$, $S_{yy} = \sum y_i^2 \frac{\left(\sum y_i\right)^2}{n}$ and $S_{xy} = \sum x_i y_i \frac{\sum x_i \sum y_i}{n}$. $\frac{\hat{b} b}{\sqrt{\hat{\sigma}^2 / S_{xx}}}$ has a t_{n-2} distribution. The mean value of y

at x_0 , $a+bx_0$, has confidence interval $\hat{a}+\hat{b}x_0\pm t_{n-2}\sqrt{\hat{\sigma}^2\bigg(\frac{1}{n}+\frac{(x_0-\overline{x})^2}{S_{xx}}\bigg)}$.

A confidence interval for a single response at x_0 is

$$\hat{a} + \hat{b}x_0 \pm t_{n-2}\sqrt{\hat{\sigma}^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right)}$$
.

The (Pearson product-moment) sample correlation is $r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$.