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Cosmology : Answer Sheet 0

I. HUBBLE PARAMETER

The Hubble parameter is estimated from Hubble’s law using H0 = v/r = zc/r. If there is an error
δv on v then (δH0)/H0 = δv/v = δv/(H0r). Hence for 10% error δv = 0.1H0r so need r ≥ δv/(0.1H0).
If the rms velocity is 600 km s−1 (which is in random directions), the rms velocity along the line of

sight (which is what is measured by the redshift) is δv =
√

6002/3 km /s ≈ 3.46 × 105m/s. Hence
r ≥ 3.46 × 105/0.1/(h × 105)Mpc ≈ 35h−1Mpc. i.e. if h = 1 then r ≥ 35Mpc, if h = 0.7 then
r ≥ 50Mpc.

II. NEWTONIAN FRIEDMANN EQUATIONS WITH COSMOLOGICAL CONSTANT

Since F/m = −∂/∂rV we have
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The points should be moving apart, with kinetic energy in a spherical shell of mass m (on any particle
in it) is given by

T = mv2/2 = mṙ2/2.

The spherical shell has potential energy V (r)m and so the total energy is (up to the constant)
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This energy should be conserved as the particles move apart. Let’s take out the expansion using
r = aχ giving
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The RHS is not a function of χ (homogeneity assumption), so the LHS cannot be either, and we can
define a constant K = −2U/(mχ2) so that
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Taking the time derivative
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where we used the energy conservation equation with P = 0 and substituted ȧ for H. Using the
Friedmann eq on the LHS then gives
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III. BIG RIP

1. The energy conservation equation is

ρ̇de + 3H(ρde + Pde) = 0.

For Pde = wρde we have

˙ρde
ρde

= −3(1 + w)
ȧ

a

Hence

d(ln ρde) = −3(1 + w)d ln a =⇒ ρde ∝ a−3(1+w).

For w < −1 we have 1 + w < 0 and hence ρde = ρ0dea
3|1+w| increases with time. Hence
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which diving through by Ωde,0 gives the answer. For Ωm(a) small,

Ωde(a) ≈ 1− Ωm,0a
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hence for Ωde(a) = 0.999

Ωm,0a
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Ωde,0
≈ 0.001 =⇒ a ≈ (0.003)−1/6 ≈ 2.63.

2. For ρde ∝ a−3(1+w), with ρ ≈ ρde so that Ωde ≈ 1
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and for w < −1 the integral converges for a′ → ∞ giving
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3. Since a → ∞, photons become increasingly redshifted (wavelength becomes increasingly long,
so photons have increasingly low energy and so become unobservable).


