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Chapter 1

Introduction

It has been known for a long time that many physical phenomena can be described accu-
rately by mathematical models. Predictions for the outcomes of experiments are generated
from sets of physical laws stated in the form of equations relating various physical quan-
tities. To derive solutions to these equations (find out what actually happens in certain
cases of interest) physicists and mathematicians often use a wide variety of mathematical
techniques. These often involve a great deal of abstraction, and intermediate steps in an
argument often deal with quantities that have no direct physical relevance.

In this thesis we use a variety of mathematical tools to tackle problems in quantum
theory, relativity and cosmology. Our choice of mathematical tool is governed by the desire
to derive results in as physical a way as possible. For example we consider objects that
correspond directly with physical observables wherever possible. This allows the derivations
of solutions to carry some physical meaning, often leading to a better physical insight into
what is happening.

Many physical quantities have a geometric nature, and it is therefore natural to describe
the physics in terms of the relevant geometric quantities. The language we choose to de-
scribe and manipulate these geometric quantities is the Geometric Algebra (GA) developed
by Hestenes [1, 2]. GA was developed from the work of Clifford and Grassman and provides
a framework for manipulating geometric quantities in a transparent and co-ordinate inde-
pendent way. In Chapter 2 we provide a general introduction to GA and establish notation.
For the applications in this thesis we use the four-dimensional GA of Special Relativity - the
Spacetime Algebra. This encapsulates Special Relativity in the geometric structure of the
spacetime, and provides a neat language for describing relativistic physics. We also describe
geometric (tensor) calculus, and show how the GA notation relates to more familiar tensor
notation.

In Chapter 3 we use the Spacetime Algebra (STA) to study the Dirac equation, the
equation governing the quantum behaviour of an electron, and apply it to the scattering of
particles with spin. We show how the Dirac equation arises fairly naturally as the quantized
version of an equation for a classical spinning particle. Using the STA approach the spinors
and observables of Dirac theory have a direct physical interpretation, and there is no need
to introduce abstract Dirac matrices as in traditional approaches.

1



2 CHAPTER 1. INTRODUCTION

After establishing the STA form of various standard results in Dirac theory we move
on to study the scattering of particles with spin. Hestenes [3] has shown how scattering
processes can be described in the STA by a scattering operator that rotates and dilates
initial states into final states. The analysis was extended by Lewis [4] to handle spin-
dependent calculations, and we clarify and develop this work further here. We show how
spin-independent results can be derived in a manifestly spin-independent way, and how
spin-dependent results can be given in terms of the relevant rest spin planes. We re-
derive various well-known results for the scattering of electrons from positrons, photons
and Coulomb fields, handling the spin-dependence directly where necessary. We briefly
show how the method could be extended to more complicated cases of spin-dependent
multi-particle scattering.

In the remainder of the thesis we consider topics in gravitational physics. We make use
of GA where appropriate to study geometric quantities, in particular in the STA formula-
tion of theories of gravitation. After discussing the fundamental theory we then consider
applications to perturbations in cosmology.

In Chapters 4 and 5 we discuss the formulation of gravity as a gauge theory using
the STA, following the approach of Lasenby et al. [5]. In this approach gravity involves
gauge fields defined over a flat background space, giving a theory much closer in spirit to
the gauge theories of particle physics than to the curved-spacetime approach of General
Relativity (GR). However the spacetime that we observe still appears curved — observable
quantities will involve non-trivial gauge fields and can be consistent with the predictions
of GR. In the gauge theory approach one assumes the existence of local symmetries that
determine the nature of the gauge fields that must be present. The dynamics of the gauge
fields are determined from an action principle — the minimization of an action gives rise
to a set of gravitational field equations that describe how the fields behave. To construct
a theory one has to decide on which symmetries to gauge, and then which action to use.
The symmetries constrain the possible form the action could take, but in general there are
a variety of possibilities.

In Chapter 4 we show that by imposing the minimum number of symmetries and using
the simplest action one obtains Einstein-Cartan theory — a theory that is locally equivalent
to GR in the absence of torsion. We review some of the key results of GR in the STA
formulation and show how our notation relates to that of differential forms. We then
consider the effect of including an additional scaling symmetry and discuss the corresponding
action. We show how a certain choice of action leads to a theory that is equivalent to GR
with the addition of a massive vector field and cosmological constant. We discuss how
our gauge theory formulation relates to similar scale invariant theories in other theories of
gravity.

Even after introducing an additional scaling symmetry the gravitational action is not
well constrained by the symmetries and there are still a wide variety of possibilities. We
discuss some of these in Chapter 5, systematically constructing the various possible in-
dependent quadratic terms for the action. These terms form legitimate contributions to
the gravitational action in both scale invariant and non-scale invariant theories, and could
potentially be significant at high energies.

We also exploit the construction of gravity as a gauge theory to consider analogues of



3

the topological structures encountered in Yang-Mills gauge theory. Instanton numbers for
windings of one of the gravitational gauge fields provide the gauge theory analogue of the
topological invariants of GR. The topological invariants are described by quadratic action
integrals and do not contribute to the local field equations. They therefore also constrain
the number of possible quadratic terms in the classical gravitational action, and we derive
the field equations obtained from the five remaining independent parity non-violating terms.

In gravitational theory one of the gauge symmetries is a local displacement symmetry,
so the dynamical equations governing the physics must be invariant under x → x′. Gauge
invariant equations will be made up of covariant quantities, quantities that transform as
F (x) → F (x′) under the displacement and also transform homogeneously under the other
gauge symmetries present. It is these variables that we need to construct observables, and
covariant quantities are therefore our preferred variables as they have some direct physical
meaning.

In Chapter 6 we assume that GR accurately describes cosmology and restrict our at-
tention to a gauge theory of gravity that is equivalent to GR. The universe appears to be
approximately homogeneous and isotropic on large scales and we can describe the struc-
ture in the universe in terms of perturbations about an exactly homogeneous and isotropic
model. We employ covariant variables to quantify these perturbations and discuss their
evolution, avoiding problems with gauge ambiguities that can arise using other methods.
We use the notation established in the earlier chapters to review previous work on covari-
ant perturbation theory [6–10], deriving a set of physically transparent linearized equations.
These can be split into equations for scalar and tensor modes as required. We review how to
perform a harmonic expansion of the scalar equations and compute the Cosmic Microwave
Background (CMB) power spectrum.

It is thought that cosmological perturbations originated from quantum fluctuations dur-
ing a period of cosmic inflation. We derive covariant equations for the propagation of per-
turbations during single-field inflation and show how the covariant variables relate to the
gauge invariant variables used in other approaches [11]. We describe how the perturba-
tions present during inflation can be related to those present after inflation, and review the
covariant multipole analysis of the Boltzmann equation needed to study their subsequent
propagation. We follow the approach of Ellis et al. [10] to derive an infinite two-dimensional
hierarchy of energy-integrated multipole equations, and show how these can be applied to
the various species of matter present. A Green’s function solution to the photon hierarchy
can be used to calculate the perturbations today in terms of a line-of-sight integral.

We give a new covariant analysis of massive neutrino perturbations, deriving equations
for the propagation of the distribution function and of the energy-integrated multipoles.
Non-covariant equations for the distribution function are well known [12], however making
judicious use of the energy integrated equations we provide a much more efficient scheme for
propagating the equations accurately. Similar schemes could be used for the propagation
for other forms of non-relativistic matter.

Performing a harmonic expansion of the covariant perturbation equations we arrive at a
set of equations that can be implemented numerically. In Chapter 7 we describe a numerical
code for computing CMB anisotropies using of the results of Chapter 6. We modify the
popular cmbfast code [13, 14], using the line-of-sight integral to compute accurate results
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efficiently. As well as implementing the covariant equations we also extend the code to
handle closed models (those with compact spatial sections), allowing us to compute new
predictions for the CMB power spectra in these models. We also implement the covariant
massive neutrino equations, using a truncated expansion in velocity dispersion to propagate
the perturbations efficiently. The code we develop provides a semi-independent check on
the results of cmbfast as well as being significantly faster in many cases. The code was
made publicly available and has already proved useful for constraining the curvature of the
universe from new observational data [15–18].

Throughout we use the summation convention and ‘natural’ units where c = ε0 = h̄ = 1.



Chapter 2

Geometric Algebra

Geometric Algebra (GA) forms a powerful mathematical language for studying geometric
objects. In physics we are often concerned with such things, for example a velocity can be
represented by a vector. Similarly a rotation can be represented by the plane of rotation
and a magnitude of rotation. This latter object is called a bivector, the geometric quantity
describing plane-like objects without reference to an arbitrary co-ordinate system. GA
provides a set of tools for manipulating such objects so physical problems can frequently be
studied directly in terms of objects that most naturally describe the physics.

Mathematically GA is a type of Clifford Algebra, invented (or discovered) in its mathe-
matical guise in the 19th century. David Hestenes was the first major proponent of GA, his
book Spacetime Algebra [2] containing many applications in relativistic physics. A second
book, Clifford Algebra to Geometric Calculus [1], has a rigorous and fairly complete treat-
ment of the maths used in many subsequent applications. In this thesis we make extensive
use of GA where appropriate. However we develop a notation that should allow readers
unfamiliar with GA to map most of our results results more or less directly into tensor or
differential forms notation if they prefer.

This chapter constitutes a fairly thorough introduction to the foundations of the algebra,
and we study some concrete examples gradually building up from the algebra of the plane
to the full spacetime algebra. We develop geometric calculus and a notation for linear
functions, and show how these relate to standard tensor notation.

2.1 Definitions and basic properties

To understand Geometric algebra we shall need a few new concepts. We are familiar with
scalars, and with vectors, directed line segments. We now introduce a bivector as a directed
plane segment. This is not a scalar or a vector but a new object. In fact we can introduce
an entire set of r-vectors, including directed volumes and directed hypervolumes. We shall
see later how these arise.

GA gives a way to manipulate multivectors. What is a multivector? It is a collection
(or sum) of r-vector parts, so it will have a scalar part, a vector part, a bivector part, and
so on. A multivector is a convenient way of dealing with the different component types

5



6 CHAPTER 2. GEOMETRIC ALGEBRA

all in one go. The different r-vector components of a multivector are defined to be graded
corresponding to their dimensionality: scalars are grade 0, vectors grade 1, bivectors grade
2, etc. We need some notation to represent the grade r component (the r-vector part) of a
multivector A, which we write as 〈A〉r. The scalar part of A is written for simplicity just
as 〈A〉 = 〈A〉0. We can therefore write

A = 〈A〉+ 〈A〉1 + 〈A〉2 + . . . . (2.1)

The separate parts of a multivector are maintained separately during addition, as is done
for the real and imaginary parts of complex numbers — scalar parts only add to scalar
parts, vector parts only to vector parts, etc. We shall assume that the algebra of the scalars
is equivalent to that of the real numbers — complex numbers are not needed [1, 19]. It
should be stressed that vectors and scalars in geometric algebra are exactly the same as the
ones we are used to. GA just gives new ways of combining and manipulating them.

It is the definition of multiplication which makes the algebra interesting. Define the
geometric product of multivectors A, B, and C by the following rules

1. A(BC) = (AB)C (associative)

2. A(B + C) = AB + AC (distributive)

Though the geometric product of multivectors is not commutative scalars still commute
with everything. There is also the additional rule for vectors:

3. For a vector a, the square a2 is equal to a·a.

Since a ·a is just the usual scalar product this third rule is important as it relates the
algebra to measurable quantities. Using it we can derive a general formula for the scalar
product of two vectors. Since a + b is a vector if a and b are vectors, the third rule gives

(a + b)2 = (a + b)·(a + b). (2.2)

Expanding both sides we get

a2 + b2 + ab + ba = a2 + b2 + 2a·b ⇒ (ab + ba) = 2a·b. (2.3)

So in geometric algebra the scalar inner product of two vectors is given by

a·b = 1
2(ab + ba). (2.4)

The inner product is symmetric, so we define an antisymmetric product

a∧b ≡ 1
2(ab− ba) (2.5)

so that
ab = a·b + a ∧ b (2.6)
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The antisymmetric product a∧b is called the outer product. To see what sort of multi-
vector a ∧ b is we can calculate its square

(a∧b)2 =
1
4
(ab− ba)(ab− ba) =

1
4
((ab + ba)2 − 4a2b2) = −a2b2 sin2 θ (2.7)

using the previous result that ab + ba = 2a ·b = 2|a||b| cos θ. This square is negative, so
since scalars are supposed to be real a∧b cannot be a scalar. Also, since rule three tells us
that the square of a vector should be the square of its length, it cannot be a vector either.1

Since two vectors define a plane we define a∧b to be a grade 2 bivector, a directed area in
the plane of a and b. The magnitude of the area is the same as the magnitude of the cross
product in three dimensions. However the result of the outer product is not a vector — it
is a directed area. The outer product is defined in any dimension greater than one, making
it much more powerful than the cross product which is only defined in 3D.

A bivector a∧b can be interpreted as the area swept out when a is moved along b, in the
plane of the two vectors. Alternatively one can view the area simply as a circle in the plane
of the vectors, in which there is a clockwise or anti-clockwise sense. The product a ∧ b ∧ c
(defined below) can be visualized as the volume swept out when the area a∧ b is swept out
along c. This helps to see that a∧ b∧ c is zero if the vectors are not linearly independent. A
bivector of the form a∧b is called a blade. A general bivector can be written as the sum of
various blades; only in two or three dimensions can all bivectors can be written as a single
blade.

We have shown that a·b = 〈ab〉 is a scalar and that a∧b = 〈ab〉2 is a bivector, so the inner
product by a vector is a grade lowering operator, and the outer product by a vector is a
grade raising operator. We can extend this property to define the outer and inner products
of general multivectors to be grade raising and grade lowering. For example we want a∧b∧c
mentioned above to be a grade three volume element. Writing a grade r multivector A as
Ar we therefore define

Ar ∧Bs ≡ 〈AB〉r+s (2.8)
Ar ·Bs ≡ 〈AB〉|r−s|. (2.9)

Note that the relation ab = a·b+a∧b does not hold when a and b become general multivectors.
However it can be shown [1] that if one of the multivectors is a vector a

a·Ar ≡ 〈aAr〉r−1 =
1
2
(aAr − (−1)rAra) (2.10)

a ∧Ar ≡ 〈aAr〉r+1 =
1
2
(aAr + (−1)rAra) (2.11)

so we have aAr = a ·Ar + a∧Ar. We see that the symmetry of the inner and outer
products with a vector alternates with increasing grade. The outer product is associative
so a∧ (b∧ c) = (a∧ b)∧ c = a∧ b∧ c as can readily be checked. The inner product for
arbitrary multivectors can be defined by taking the inner products of the components:

1This argument of course only applies in a space with positive definite signature. However it provides
motivation for defining a∧b to be a bivector in any space.
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A·B =
∑

r,s〈A〉r·〈B〉s, and similarly for the outer product. The inner product with a scalar
is taken to be zero; the outer product with a scalar to be the product with the scalar.

Each part of a multivector can be split up into a sum of linearly independent components
of the same type — just as one can express a vector as a sum over basis vectors, one can
express bivectors as a sum over basis bivectors. One usually chooses a set of orthonormal
basis vectors to describe the space. These can then be multiplied together to build up the
basis elements of the full geometric algebra. To see what the algebra actually looks like in
a concrete case we now examine the algebra of the plane.

2.2 Algebra of the Plane

In 2D there are two orthonormal basis vectors σ1 and σ2, where σ1 ·σ2 = 0. The algebra
has one scalar element 1, two vector elements σ1 and σ2, and one bivector element σ1σ2 =
σ1∧σ2. We cannot generate any further independent quantities: since the basis vectors are
orthogonal they anticommute and σ2

1 = σ2
2 = 1, so

σ1σ2σ1 = −σ1σ1σ2 = −σ2 (2.12)
σ1σ2σ2 = σ1 (2.13)

(σ1σ2)2 = σ1σ2σ1σ2 = −σ1σ2σ2σ1 = −1. (2.14)

All higher products of the basis vectors reduce to one of our four basis elements.
A general multivector will be a sum of these basis elements:

A = α + βσ1 + γσ2 + δσ1σ2 (2.15)

where the Greek letters are scalars. Multiplication of multivectors takes place element by
element, so

AB = (αa + βaσ1 + γaσ2 + δaσ1σ2)(αb + βbσ1 + γbσ2 + δbσ1σ2). (2.16)

This gives, for example, for the scalar part of the product

〈AB〉 = αaαb + βaβb + γaγb − δaδb. (2.17)

The other parts of the product are generated similarly. Note that the bivector σ1σ2 has
a negative square. Indeed, the even grade elements of the algebra z = x + yσ1σ2 form a
subalgebra equivalent to the complex numbers:

z1z2 = (x1 + y1σ1σ2)(x2 + y2σ1σ2) = (x1x2 − y1y2) + (x1y2 + y1x2)σ1σ2. (2.18)

This shows that anything that can be done using complex numbers can be done equally
well using the geometric algebra of the plane. Sometimes this can be used to give a direct
geometric interpretation to equations which conventionally contain the scalar imaginary i.

The outer product of two vectors a and b can be expressed as a∧ b⊥, where b⊥ is
the projection of b perpendicular to a (the outer product with the parallel component



2.3. ALGEBRA OF 3-SPACE 9

is zero). The component of b perpendicular to a has magnitude |b| sin θ, showing that
a∧b = σ1σ2|a||b| sin θ, and therefore that |a∧b| = |a||b| sin θ. For any unit vectors m and n

mn = m·n + m∧n = cos θ + m∧n⊥ = cos θ + σ1σ2 sin θ. (2.19)

Because of the isomorphism with complex numbers we can write

mn = cos θ + σ1σ2 sin θ = eσ1σ2θ = eB, (2.20)

where B is a bivector with magnitude θ.

2.3 Algebra of 3-Space

We now have an additional orthonormal basis vector σ3, and we can generate the following
basis elements:

1 {σ1,σ2, σ3} {σ1σ2,σ2σ3, σ3σ1} σ1σ2σ3

scalar vectors bivectors trivector

It is easy to show that the trivector element commutes with all vectors, and hence
that it commutes with all multivectors. Also (σ1σ2σ3)2 = σ1σ2σ3σ1σ2σ3 = −1 by anti-
commuting the products. The trivector is also the highest element of the space. Highest
grade elements are called pseudoscalars, and, since there are no higher grades, their outer
products with vectors are zero. We give this pseudoscalar the symbol

I ≡ σ1σ2σ3. (2.21)

The algebra of z = x+ Iy, where x and y are scalars, is equivalent to the complex numbers.
In fact we are spoilt for choice for

√−1 since any unit bivector also squares to give −1.
Using the definition of I we get that

Iσ1 = σ2σ3, Iσ2 = σ3σ1, and Iσ3 = σ1σ2. (2.22)

So we see that multiplication by the pseudoscalar defines the duality operation - it maps
from an r-grade element to an (n− r) grade element, where n is the number of dimensions.
In 3D the duality operation maps from bivectors to vectors (and vice-versa). For this reason
it is sometimes useful to write the bivectors as Σk ≡ Iσk.

Using the duality operation in 3D we can recover the traditional cross product from the
outer product:

a×b = −Ia∧b. (2.23)

For example σ1×σ2 = −Iσ1σ2 = −IIσ3 = σ3 as we expect. Here we adopt the convention
that inner and outer products take place before geometric products, so Ia∧b = I(a∧b).
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2.4 Useful definitions and identities

Geometric algebra gives us a way to define inverses of vectors. Since a2 is a scalar, as long
as it is non-zero we can define

a−1 =
a

a2
(2.24)

so that a−1a = 1.
We define the reverse of a multivector A, written Ã, which reverses all the vector

products making up the multivector so that

(AB)̃ = B̃Ã, (2.25)
ãi = ai, (2.26)

(a1a2 . . . ar )̃ = ar . . . a2a1 (2.27)

This is used to define the modulus of multivectors:

|A| = 〈ÃA〉12 . (2.28)

which correctly gives |a∧b| = |a||b| sin θ from (2.7).
As an example of using the algebra to derive useful identities let us look at the GA

equivalent of the vector triple product, a·(b∧c). From ab = a·b + a∧b we know that

ab = −ba + 2a·b (2.29)

so

a·(b∧c) = 〈ab∧c〉1 = 1
2〈abc− acb〉1 = 1

2〈−bac + 2a·bc + cab− 2a·cb〉1 (2.30)
= a·bc− a·cb. (2.31)

Here we have used the fact that 〈cab〉1 = 〈bac〉1 because vectors reverse to themselves.
Specializing to 3D we can convert this to the traditional relation for a×(b×c) as follows:

a·(b∧c) = 〈ab∧c〉1 = 〈a(Ib×c)〉1 = 〈Iab×c〉1 = Ia∧(b×c) (2.32)
= −a×(b×c). (2.33)

The GA identity is however quite general. We have also managed to prove the identity
entirely algebraically without resorting to components.

Identities for more general multivectors take more work. We list some of the most useful
here; proofs can be found in [1]

a·(Ar∧Bs) = (a·Ar)∧Bs + (−1)rAr∧(a·Bs) (2.34)

a∧(Ar ·Bs) = (a·Ar)·Bs + (−1)rAr ·(a∧Bs) (2.35)

Ar ·(Bs ·Ct) = (Ar∧Bs)·Ct r + s ≤ t, r, s > 0. (2.36)
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Finally, two more items of notation are useful. The scalar product of multivectors we
write as

A∗B ≡ 〈AB〉 (2.37)

which is sometimes more convenient than using angle brackets. The commutator product
is written

A×B ≡ 1
2(AB −BA) (2.38)

(not to be confused with the traditional cross product). Clearly for vectors this coincides
with the outer product. If A is a vector and B is a bivector then it is the same as the inner
product. However for general multivectors the commutator product will not coincide with
either the inner or outer product.

2.5 Rotations and reflections

Geometric algebra provides a neat way of handling reflections and rotations in any number
of dimensions. Given a unit vector n, any vector can be resolved into parts parallel and
perpendicular to it, so that a = a‖ + a⊥. Since a⊥ anticommutes with n it follows that the
reflection in the hyperplane orthogonal to n is given by

a⊥ − a‖ = (a⊥ − a‖)nn−1 = −nan−1. (2.39)

If we have a second unit vector m where m2 = n2 we can make a rotation by combining the
two reflections

a → mnan−1m−1 = mnanm. (2.40)

We define a rotor R ≡ mn, so that
a → RaR̃. (2.41)

Here R is a simple rotor, one that can be written as the product of two vectors. In a general
space where not all unit vectors satisfy n2 = m2 (as in the Spacetime Algebra) a general
rotation can be described by a rotor made up of a product of simple rotors. In all cases the
same transformation law applies, R contains only even elements, and RR̃ = R̃R = 1. As a
check the scalar product is invariant under rotations

(RaR̃)·(RbR̃) = 1
2(RaR̃RbR̃ + RbR̃RaR̃) = R(a·b)R̃ = a·b (2.42)

since a·b is a scalar and commutes with R.
As we saw earlier in (2.20), the product of two Euclidean unit vectors can be expressed

as eB, where B is a bivector in the plane of rotation. The magnitude of B was the angle θ
between n and m, which is in fact half the rotation angle. So we can write

R = e−B/2 (2.43)

where B is a bivector in the plane of the rotation, and has magnitude equal to the rotation
angle.
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Note that the rotor R gives the rotation in terms of the plane in which it takes place.
This is more general than the procedure used in three dimensions of defining a rotation by a
vector perpendicular to the plane of the rotation — in higher dimensions the perpendicular
vector is ambiguous, whereas the plane of rotation is not. The rotation also works with any
vector product (and hence with any multivector), whatever grade, since

a1a2 . . . ar → Ra1R̃Ra2R̃ . . . RarR̃ = Ra1a2 . . . arR̃. (2.44)

In 3-space we can map the bivector to an orthogonal vector by the duality operation, giving

R = e−Ia/2 = cos(|a|/2)− Iâ sin(|a|/2) (2.45)

for a rotation of |a| radians about the a axis, where â is a unit vector in the a direction.
The vector part of the sine term can be pulled out of the sine, since the sine series has only
odd powers and each term in the series is a vector. Since R = e−B/2, and B is a bivector
(so B̃ = −B), the reverse is R̃ = eB/2. This gives the simple rotation of a multivector A,
by |a| radians about the a axis, as

A → e−Ia/2AeIa/2. (2.46)

2.6 Spacetime Algebra

Minkowski Spacetime is four dimensional so to discuss relativity we need to develop a four
dimensional geometric algebra, the Spacetime Algebra (STA). In the STA the squares of
the basis vectors are no longer all positive: we shall use the metric (+−−−), with the four
basis vectors γµ, where γ2

0 = 1, and γ2
k = −1 for k = 1, 2, 3. The basis vectors then satisfy

the Dirac algebra
γµ ·γν ≡ 1

2(γµγν + γνγµ) = diag(+−−−). (2.47)

By repeated multiplication by the basis vectors we get the 16 elements of the STA:

1 {γµ} {σk,Σk} {Iγµ} I
scalar vectors bivectors pseudovectors pseudoscalar

The bivectors σk ≡ γkγ0 are isomorphic to the basis vectors we used for 3-space. For
example

Iσ3 = σ1σ2σ3σ3 = γ1γ0γ2γ0γ3γ0γ3γ0 = γ1γ0γ2γ0 = σ1σ2. (2.48)

Similarly the Σk = Iσk are isomorphic to the basis bivectors of Euclidean 3-space. In the
STA we have the definition

I ≡ σ1σ2σ3 = γ1γ0γ2γ0γ3γ0 = γ0γ1γ2γ3 (2.49)

consistent with our earlier definition of the pseudoscalar as the highest grade element.
Note that though I commutes with σk, it anticommutes with vectors and trivectors. The
isomorphism shows that anything that can be done in the 3D algebra can equally well be
done using the even elements of the STA. If we take γ0 to be the lab frame velocity vector
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the σk then represent a frame in space relative to the γ0 vector. That vectors in three space
should be represented by bivectors is not unreasonable since vectors in 3D are line segments
existing for a certain time, which gives a bivector in the STA.

We can do a space-time split of a vector into the γ0 frame by multiplying by γ0. Bold
letters are now used for relative 3-vectors (spacetime bivectors). The split is

aγ0 = a0 + a (2.50)

where a0 = a·γ0 and a = a∧γ0. In particular x is split (using natural units)

xγ0 = x·γ0 + x∧γ0 = t + x. (2.51)

If we define2 β = v ·γ0 = dt/dτ , then the relative 3-velocity is

v =
dx

dt
=

dτ

dt

dx

dτ
=

v∧γ0

β
. (2.52)

Using this we have that
vγ0 = v ·γ0 + v∧γ0 = β(1 + v). (2.53)

Since v2 = 1 is invariant we get

1 = (vγ0)(γ0v) = β(1 + v)β(1− v) = β2(1− v2) (2.54)

so rearranging we get the familiar result

β =
dt

dτ
=

1√
1− v2

. (2.55)

Using the space-time split of x we have

x2 = xγ0γ0x = (t + x)(t− x) = t2 − x2. (2.56)

General Lorentz transformations can be expressed as four-dimensional rotations, ex-
pressed in GA by the rotor transformation law. In four dimensions we cannot do all possible
transforms by just one rotation in a plane, so we split up the rotor into two simple rotors
— a spatial rotation followed by a Lorentz boost. The boost is just a rotation in a time-like
plane, used to change the relative velocity. A boost L will rotate the vector γ0 to the new
velocity v,

v = Lγ0L̃. (2.57)

We can use (2.40) to make the rotor out of two reflections: reflect in the hyperplane orthog-
onal to the line between the two vectors (γ0 +v)/|γ0 +v|, and then reflect in the hyperplane
orthogonal to v. This gives

L = v
γ0 + v

|γ0 + v| =
1 + vγ0√
2(1 + v ·γ0)

. (2.58)

2Though it is more usual to use the symbol γ we use β here to avoid confusion with the basis vectors
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Squaring this we see that L2 = vγ0, which, from (2.53), gives L2 = β(1 + v). Using the
space-time splits of the velocity, L becomes

L =
1 + β + βv√

2(1 + β)
. (2.59)

Let us see what the parts of a vector look like after a boost. Using L̃γ0 = γ0L we get

a′0 + a′ = LaL̃γ0 = Laγ0L = L(a0 + a)L. (2.60)

If we now split a into parts parallel and orthogonal to v (the only non-commuting part of
L), we have

a′0 + a′ = L2(a0 + a‖) + LL̃a⊥ (2.61)

= β(1 + v)(a0 + a‖) + a⊥ (2.62)

Equating parts of the same grade we recover the Lorentz transformations

a′0 = β(a0 + v ·a) (2.63)
a′ = β(a‖ + a0v) + a⊥. (2.64)

2.7 Geometric Calculus

Geometric Algebra provides a framework for extending calculus to provide many useful
generalizations of standard results and can provide an alternative to traditional tensor
calculus. The subject is developed extensively in [1], but we shall only look at the most
important points here.

We can define a partial derivative of an arbitrary multivector valued function F (a) of a
vector a in the direction of a vector b. Formally this is done by the definition:

b·∂a F (a) ≡ lim
τ→0

F (a + τb)− F (a)
τ

(2.65)

where b ·∂a is a single scalar operator. This can be used to define the full derivative by
reference to a frame ei of vectors. A reciprocal frame, ej , is defined such that ei ·ej = δij

(note that ej is also just a vector, it is not a 1-form or anything else). We now define (using
the summation convention)

∂a ≡ eiei ·∂a. (2.66)

In the case where a is the position vector x we get the vector derivative

∇ ≡ ∂x = ei ei ·∂x. (2.67)

If ∇ is acting on a vector then ∇ = ei∂i, where ∂i is the differential with respect to the
ei component. In two and three dimensions the reciprocal frame is the same as the frame,
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but we shall need to distinguish between the two when we come to consider calculus in the
algebra of spacetime. Note that ∇ is a vector, so when acting on a vector A we have

∇A = ∇·A +∇∧A, (2.68)

which shows that the vector derivative in 3D encompasses the divergence and curl, and
that when it acts on a scalar it is the same as grad. By convention ∇ only operates on the
object to its immediate right unless brackets are used to indicate otherwise, or over-stars
or overdots are used to show what it operates on.

We can also define a more general multivector derivative. [1] Define the derivative with
respect to X in the A ‘direction’ by

A∗∂XF (X) ≡ lim
τ→0

F (X + τPX(A))− F (X)
τ

(2.69)

Here A∗∂X is a single scalar operator and PX(A) projects A into the grades in X. We now
use a multivector basis eK for the algebra under consideration. As when eK was a vector
we define the reciprocal frame eK of multivectors so that 〈eJeK〉 = δJ

K . We can now define
the multivector derivative

∂X = eKeK ∗∂X . (2.70)

A useful result that can be used to calculate more complicated results is

∂X〈XA〉 = eK〈eK ∗∂XXA〉 = eK〈PX(eK)A〉 (2.71)
= eK〈eKPX(A)〉 = PX(A). (2.72)

Here are some examples of how the derivative works, where n is the space dimension:

∂aa = eiei ·∂aa = ei ·ei = n (2.73)

∂aa·b = ei(ei ·∂aa)·b = eiei ·b = b (2.74)

∂aba = ∂a(2a·b− ab) = (2− n)b. (2.75)

∂X〈XX̃〉 = X̃ + ∂̇X〈X ˙̃
X〉 = X̃ + ∂̇X〈ẊX̃〉 = 2X̃ (2.76)

2.8 Electromagnetism

Here we briefly show how GA can be useful in the description of electromagnetism. The
Faraday tensor of conventional treatments, Fµν , is given by

Fµν = ∂µAν − ∂νAµ (2.77)

where Aν is the vector potential. We can write this as

Fµν = (eν∧eµ)·(∇∧A) (2.78)
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as can be checked using the relation

(a∧b)·(c∧d) = b·ca·d− b·da·c. (2.79)

We can therefore equally well use the Faraday bivector F = ∇∧A instead of an antisymmetric
tensor. This is typical of translations into GA — a tensor is represented by some geometric
object which naturally has the correct symmetry properties. This is equivalent to the use
of the Faraday 2-form in differential geometry, however we can now use the unique features
of GA to manipulate the bivector.

In a given γ0 frame we can split F into electric and magnetic parts, F = E + IB, where

E = 1
2(F − γ0Fγ0) (2.80)

IB = 1
2(F + γ0Fγ0). (2.81)

In the γ0 frame this gives a unique split of F into E and B since E and IB are orthogonal
spacetime planes. We also need a 4-current J which is split

Jγ0 = J + ρ. (2.82)

To split ∇ we have to remember that it was defined in terms of a reciprocal frame, which
gives

γ0∇ = ∂t + ∇ (2.83)

It is now possible to write Maxwell’s equations all in one go as

∇F = J. (2.84)

We can check that this is correct by left multiplying by γ0:

γ0∇F = (∂t + ∇)(E + IB) (2.85)

= ∇·E + I∇·B +
∂E

∂t
+ I

∂B

∂t
+ ∇∧E + I∇∧B (2.86)

= γ0J = ρ− J (2.87)

The outer products can be converted to curls by using ∇×a = −I∇∧a. If we then equate
parts of the same grade on both sides we recover the four Maxwell’s equations, corresponding
to the four grades of the 3-space algebra.

2.9 Linear functions and notation

Linear functions are very important in physics, usually in the form of tensors which describe
various physical fields. We can write the action of a linear function explicitly, for example
a vector valued function f acting on a vector can be written

a → f
¯
(a). (2.88)
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We use the underbar on any non-scalar linear function to emphasize that the result is not
a scalar. Such linear functions are often represented with respect to a particular frame by
matrices:

aµ → f ν
µ aν (2.89)

where fµ
ν are the components of the function in a particular basis {eµ} given by

fµ
ν = eµ ·f

¯
(eν). (2.90)

In GA we prefer to maintain a frame-free notation. However the use of indices is still useful,
so for a constant vector a we define

f
¯a
≡ f

¯
(a). (2.91)

It is also sometimes useful to have a scalar representation of a function, in which case we
define

fab ≡ a·f
¯
(b). (2.92)

We drop the underbar to show that it is now a scalar (and not, for example, a vector valued
function of two vectors). We can also write the component of a vector V in the direction
a as Va ≡ a·V . This is consistent notation as Va could equally well be viewed as a scalar
valued function of the vector a. Clearly if we set a = ei, b = ej we recover the components
in that frame, however this is an ‘abstract index’ notation which does not need to reference
a particular frame.

A common matrix operation is the transpose which in GA we call the adjoint. We write
it with an overbar as f̄a and it is defined by

a·f
¯
(b) = f̄(a)·b (2.93)

so that the scalar representation of f̄(a) is b · f̄(a) = fab. If fab = fba the function is
symmetric. It is when discussing this kind of symmetry property that the scalar index
notation can be most transparent.

Contractions in GA can be formed by using the derivative:

∂a ·f
¯
(a) = eν ·∂a eν ·f

¯
(a) = eν ·f

¯
(eν ·∂aa) = eν ·f

¯
(eν). (2.94)

This notation was used extensively in[5], however here we prefer to use a notation closer to
tensor notation and write ∂a as γa. In our index notation we define

f
¯

a ≡ f
¯
(γa) (2.95)

and the contraction can be written as

γa ·f
¯a

= fa
a. (2.96)

Similarly for a vector V we write V a ≡ γa ·V . When we are using index notation it can be
more consistent to write an arbitrary constant vector a in an equation as γa. If required
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we can then replace the γa and γa with particular frame vectors ei and ei to obtain a
representation in a particular frame. We therefore have the equivalent forms

γa ·f
¯a
≡ γa ·f

¯
(γa) ≡ ∂a ·f

¯
(a) = fa

a = ei ·f
¯
(ei). (2.97)

and our previous definitions can be written

γa ·f
¯b
≡ γb ·f̄a fab ≡ γa ·f

¯b
≡ γa ·f

¯
(γb) (2.98)

We may also wish to consider linear functions of other multivectors, not just vectors.
Clearly it is not a problem to define such objects. However often we simply want to extend
a function of a vector to act on other objects, and to this end we define the action on a
blade by outermorphism:

f
¯
(a1∧a2∧. . .∧an) ≡ f

¯
(a1)∧f

¯
(a2)∧. . .∧f

¯
(an). (2.99)

Then by linearity we can construct the function acting on any multivector. For example
the determinant is just the volume scale factor of a linear function and is therefore given
simply by

det f = I−1f
¯
(I) (2.100)

where I is a general pseudoscalar, the volume element for the space under consideration.
Useful relations for the inverse functions are derived in [1] and given by

f
¯
−1(A) = det f−1f̄(AI)I−1 (2.101)

f̄−1(A) = det f−1I−1f
¯
(IA) (2.102)

An important class of linear functions are tensors. These transform under rotations as

f
¯
(a) → Rf

¯
(R̃aR)R̃. (2.103)

For example if f
¯
(a) is determined by vectors V and X as f

¯
(a) = a·XV it transforms as

f
¯
(a) → (R̃aR)·X RV R̃ = a·(RXR̃) RV R̃ (2.104)

which is what we would have obtained if we had written down f
¯
(a) after the rotation.

To apply Lagrangian mechanics to general field theories we need to extend our geometric
calculus to allow differentiation with respect to a linear function. [5] To do this we define
the components of a multivector valued linear function of a vector X(a)

XIj ≡ 〈eIX(ej)〉 (2.105)

and assemble the full derivative

∂X(a) ≡ a·ejeI∂XIj
. (2.106)
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The fundamental property is that

∂X(a)〈X(b)M〉 = a·ejeI∂XIj
(XIjb

j [PX(M)]I) (2.107)

= a·b eI [PX(M)]I (2.108)
= a·b PX(M). (2.109)

We could easily extend the definition to linear functions of more than one argument. As
an example we can calculate the derivative of the determinant of a vector valued function
h
¯
(a). Using the general relation [1]

a·(b∧c∧d∧. . . ) = a·b(c∧d∧. . . )− a·c(b∧d∧. . . ) + a·d(b∧c∧. . . )− . . . (2.110)

remembering that h
¯
(Ar) is an outermorphism and using Leibnitz rule we have

∂h
¯

(a)〈h¯(Ar)Br〉 = h
¯
(a·Ar)·Br. (2.111)

Now we can calculate the derivative of the determinant:

∂h
¯

(a) deth = ∂h
¯

(a)〈h¯(I)I−1〉 (2.112)

= h
¯
(a·I)I−1 (2.113)

= h̄−1(a) det h (2.114)

where in the last line we have used the inverse (2.102). Similarly

∂h̄(a) det h = h
¯
−1(a) deth. (2.115)

2.10 Conclusions

As we have seen, GA provides a clear way for manipulating physical objects. The algebra of
spacetime allows Lorentz transformations to be carried out by rotations, in a manner clearly
analogous to rotations in 3-space. We have a co-ordinate free ‘abstract index’ notation that
frees us from reference to a specific co-ordinate basis. GA is close in spirit to the language
of differential forms; however forms lack the geometric product and therefore lack the power
of GA.

In the subsequent chapters we consider some applications of GA and assume familiarity
with the results in this chapter. When we consider electron scattering we shall find that
the GA approach has much to offer. In the formulation of gauge theory gravity we also find
some significant benefits. However as we move on to cosmological applications we mostly
use the subset that is equivalent to traditional tensor manipulations. Ultimately, as when
we consider perturbations in cosmology, we often reduce to a set of scalar equations that
can be handled numerically by computer.

We believe that it makes sense to use the most appropriate tool to study a problem.
When GA is optimal then use GA, when tensor notation is best we use that. Rather
than dogmatically applying one set of notation to all problems we have tried to develop
a notation that shows the connections between the different formulations and allows us to
move between them as convenient.





Chapter 3

Electron Scattering in the
Spacetime Algebra

The Spacetime Algebra provides an elegant language for studying the Dirac equation and
helps illuminate the correspondence with classical theory. Cross-section calculations can be
performed in an intuitive way following a method suggested by Hestenes [3]. The S-matrix
is replaced with a scattering operator which rotates and dilates the initial states into the
scattered states. We show how the method neatly handles spin dependence by allowing
the scattering operator to become a function of the initial spin. When the operator is
independent of spin we can provide manifestly spin-independent results. Spin basis states
are not needed, and we do no spin sums, instead dealing with the spin orientation directly.
We perform some example calculations for single electron scattering and briefly discuss more
complicated cases in QED.

3.1 Introduction

The Dirac equation governs the quantum behaviour of particles with spin and can be rep-
resented mathematically in various ways. In Dirac’s original formulation abstract ‘gamma
matrices’ are introduced in a rather mysterious way. The gamma matrices satisfy a Clifford
Algebra and have no direct physical interpretation. Here we use the Geometric Algebra for-
mulation of the equation which is physically equivalent but rather less abstract and allows
for a more physical interpretation. The complex spinors of the traditional approach are
replaced by even multivectors that have a direct interpretation in terms of the probability
density and spin orientation. In the GA formulation the Clifford Algebra structure is built
into the algebra of spacetime and is no surprise.

The GA formulation of Dirac theory replaces the matrices of the conventional theory
with multivectors, allowing a direct correspondence with the equation governing a classi-
cal spinning particle. We introduce the STA form of the Dirac equation, and show how
the theory can be developed within the STA. Using the STA formulation Hestenes [3] has
demonstrated an elegant method for performing cross-section calculations, which was fur-
ther developed in [4]. We extend and clarify this work, handling spin-dependence in a

21
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natural way.
Methods for calculating spinor cross-sections are well known, however these usually

involve complicated abstract calculations with gamma matrices. In this chapter we show
how to calculate cross-sections in a more transparent and intuitive way. Instead of using spin
basis states, summing over spins and using spin projection operators, we instead incorporate
the spin orientation directly. This greatly streamlines the calculation of spin dependent
results, and makes it clear when results are independent of spin. We first consider single
electron scattering, where our method is most naturally applied, and then briefly discuss
multi-particle scattering.

3.2 The Dirac equation

The Hestenes STA form of the Dirac equation is entirely equivalent to the usual equa-
tion [20]. However the STA approach brings out the geometric structure, leading to more
physically transparent calculations. Here we show that it is possible to arrive at the Dirac
equation by quantizing a classical equation. This ‘derivation’ has the advantage that the
observables are then clearly related to the classical parameters, and the geometric structure
of the theory is brought out.

Our classical model will consist of a small spinning symmetric top with four velocity v.
We can represent v as a boosted version of the lab frame time vector γ0:

v = Lγ0L̃ (3.1)

where L is a boosting rotor. In this way the velocity can be represented by the rotor L.
Similarly we can use a spatial rotor U to encode the spin plane as a rotation of some fixed
reference plane. We write the rest spin of the top as

Ŝ0 = UΣŨ (3.2)

where Σ is some arbitrary constant reference bivector orthogonal to γ0 (Σ = Σ3 is often
chosen). Since U is a spatial rotor it does not affect the γ0 direction so the momentum can
be written

p = mRγ0R̃ (3.3)

where R = LU . This equation for p squares to give p2 = m2 which gives the Klein-Gordon
equation on quantization. However the rotor equation contains much more information
than the scalar equation given by its square.

The full rotor R = LU can be used to define the relativistic spin bivector by boosting
up Ŝ0

Ŝ = LŜ0L̃ = RΣR̃. (3.4)

As well as encoding the rotation of Σ into the spin plane the spatial rotor U can also
include an arbitrary unobservable rotation in the reference plane Σ. The full rotor R
therefore encodes everything about the four velocity and spin direction of the top as well
some arbitrary unobservable rotation in the spin plane.
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In the quantum version we wish to have probability densities. In the rest frame of the
top this corresponds to some probability density ρ of finding it at each point. We want
this to be the v ·J component of a four vector probability current J , with the lab frame
probability density given by γ0·J . We therefore define the four vector J = ρv which can be
written

J = ρRγ0R̃. (3.5)

We now wrap up ρ and R into a single even multivector ψ = ρ1/2R so that

J = ψγ0ψ̃ (3.6)

and the rest frame probability density is given by ρ = ψψ̃. We now want to put the equation
for the momentum in terms of ψ. Multiplying the equation on the right by R we have

pR = mRγ0 (3.7)
=⇒ pψ = mψγ0. (3.8)

This equation now contains all the ingredients for successful quantization. The usual pro-
cedure is to make the replacement pµ → ̂∇µ, so we get

̂∇ψ = mψγ0 (3.9)

as our form of the Dirac equation. For a plane wave ψ(x) = ψe−̂p·x this just gives us back
our classical equation, as expected.

There is a remaining ambiguity in what ̂ is. It could be a scalar imaginary, or could it
be something more physical? Multiplication by ̂ should just affect the phase of the wave
function, we don’t want the spin or momentum to be affected. So for plane waves, writing
ψ′ = ̂ψ, we want

S′ = ψ′Σψ̃′ = ψΣψ̃ and J ′ = ψ′γ0ψ̃
′ = ψγ0ψ̃. (3.10)

These can be satisfied if

ψ′ ≡ ̂ψ = Ŝψ or ψ′ ≡ ̂ψ = ψΣ, (3.11)

and indeed for plane wave states these are equivalent since

ψΣ = 1/ρψΣψ̃ψ = Ŝψ. (3.12)

So the ‘complex’ phase factors of the form êα just encodes rotations in the spin plane —
the rotations that were unobservable in the classical case.

3.3 Dirac theory

Having ‘derived’ the Dirac equation we now take that equation as given and see what it
implies. For positive energy plane wave states all the classical results still hold. However
we now have two sets of plane wave solutions,

ψ(+) = u(p)e−̂p·x and ψ(−) = v(p)êp·x (3.13)
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where
mu− puγ0 = 0 and mv + pvγ0 = 0. (3.14)

We therefore have positive and negative energy states, with energy projection operators
given by

Λ±(ψ) =
1

2m
(mψ ± pψγ0). (3.15)

Since ψψ̃ reverses to itself it can only contain scalar and pseudoscalar parts and we define

ρeIβ ≡ ψψ̃ (3.16)

where β and ρ are scalars. So the general form for ψ is now

ψ = ρ1/2eIβ/2R. (3.17)

In addition to encoding a rotation and a dilation, the spinor also contains a ‘β-factor’. This
determines the ratio of particle to anti-particle solutions since

Λ±(Iψ) = IΛ∓(ψ). (3.18)

The transformation properties of ψ are inherited from its component rotor, so we have

ψL(x) = Rψ(R̃xR). (3.19)

We call an element of the STA that transforms as a rotor a spinor.
The Dirac equation can be obtained from the Lagrangian

L = 〈̂∇ψγ0ψ̃ −mψψ̃〉 (3.20)

by using the multivector form of the Euler-Lagrange equations [5, 21]. The Lagrangian is
invariant under

ψ → ψêθ (3.21)

corresponding to invariance under rotation in the spin plane. Using the multivector form
of Noether’s theorem [21], we find the corresponding conserved probability current

J = ψγ0ψ̃, (3.22)

in agreement with our classical definition. The Dirac equation ensures that ∇·J = 0.

3.4 Plane waves and basis states

Using the decomposition R = LU of a rotor into a spatial rotation U and a boost L we can
write a spinor ψ as

ψ = ρ1/2eIβ/2LU. (3.23)

Consider a positive energy spinor u = Λ+(u) and a negative energy spinor v = Λ−(v). If
the particle is at rest we have

γ0u
0γ0 = u0 and γ0v

0γ0 = −v0 (3.24)
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which implies that
u0 = ρ1/2

u Uu and v0 = ρ1/2
v IUv. (3.25)

We can find the more general form by performing a boost to momentum p. The boost
transforms mγ0 into the momentum p:

p = mLγ0L̃ =⇒ pLγ0 −mL = 0 (3.26)

so that Λ−(L) = 0. A solution is therefore of the form L = Λ+(X). Choosing X equal to a
constant so that L̃L = 1 we have

L =
m + pγ0√
2m(E + m)

=
E + m + p√
2m(E + m)

. (3.27)

Normalizing so that ρu = ρv = 2m and performing the boost we get

u(p) = Lu0 =
√

E + m

(
1 +

p

E + m

)
Uu (3.28)

v(p) = Lv0 = I
√

E + m

(
1 +

p

E + m

)
Uv. (3.29)

In addition to the energy projection operators there are also the projection operators

χ±(ψ) = 1
2(ψ ∓ PψΣ) (3.30)

where P is a bivector with P 2 = −1. For a state a ψ satisfying ψ = χ±(ψ) we have

ψ = ∓PψΣ. (3.31)

Multiplying on the right by ψ̃ this gives ρ = ∓ρP Ŝ and so Ŝ = ±P . The projection operator
therefore projects out parts corresponding the two spin orientations in the plane P . The
spin projection operators commute with the energy projection operators

Λ±(ψ) =
1

2m
(mψ ± pψγ0) (3.32)

since P · p = 0. We can therefore split an arbitrary spinor (eight real components) into
scalar and ̂ multiples of four basis states

u1 = χ+(Λ+(u1)) u2 = χ−(Λ+(u2)) (3.33)
v1 = χ−(Λ−(v1)) v2 = χ+(Λ−(v2)) (3.34)

With the normalization convention that uũ = 2m the four basis states obey the orthogo-
nality relations

〈ũrus〉S = 2mδr
s 〈ṽrvs〉S = −2mδr

s (3.35)
〈ũrvs〉S = 0 〈ṽrus〉S = 0 (3.36)



26 CHAPTER 3. ELECTRON SCATTERING IN THE SPACETIME ALGEBRA

where 〈A〉S represents the {1,Σ} projection of A:

〈A〉S ≡ 〈A〉 − 〈AΣ〉Σ. (3.37)

By writing ψ as a sum over basis states it is easy to see that
∑

r

ur〈ũrψ〉S = pψγ0 + mψ and
∑

r

vr〈ṽrψ〉S = pψγ0 −mψ. (3.38)

So we see that the usual basis state results of Dirac theory can be formulated in the STA
approach. However we shall now develop the scattering theory largely without resort to
basis states.

3.5 Feynman propagators

We now consider how to handle scattering from a vector potential A. This requires solutions
of the minimally coupled Dirac equation which can be written

̂∇ψγ0 −mψ = eAψγ0 (3.39)

where e = −|e| is the electron charge. We use a Green’s function for this equation satisfying

̂∇xSF (x− x′)ψ(x′)γ0 −mSF (x− x′)ψ(x′) = δ4(x− x′)ψ(x′) (3.40)

so that an integral solution can be found from

ψ(x) = ψi(x) + e

∫
d4x′SF (x− x′)A(x′)ψ(x′)γ0 (3.41)

where ψi satisfies the free-particle equation. Taking the Fourier transform we have

pSF (p)ψγ0 −mSF (p)ψ = ψ (3.42)

where

SF (x− x′) =
∫

d4p

(2π)4
SF (p)e−̂p·(x−x′). (3.43)

Operating on both sides with the energy projection operator Λ+ we can solve for the mo-
mentum space Feynman propagator:

(p2 −m2)SF (p)ψ = pψγ0 + mψ (3.44)

⇒ SF (p)ψ =
pψγ0 + mψ

p2 −m2 + ̂ε
. (3.45)

The ̂ε ensures that the contour integral is in the Σ plane and that it is causal—positive
energy waves propagate into the future and negative energy waves into the past. Fourier
transforming back and performing the integral over dE we get

SF (x− x′)ψ = −2m̂

∫
d3p

2Ep(2π)3
[θ(t− t′)Λ+(ψ)e−̂p·(x−x′) + θ(t′ − t)Λ−(ψ)êp·(x−x′)] (3.46)
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where E = +
√

p2 + m2.
The photon propagator is the Greens’ function for Maxwell’s equations. In the Lorentz

gauge ∇·A = 0 we have ∇2A = J , so the Greens’ function must satisfy

∇2
xDF (x− x′) = δ4(x− x′). (3.47)

Taking the Fourier transform we can solve for the Feynman propagator

DF (p) =
−1

p2 + ̂ε
. (3.48)

3.6 Electron scattering

For scattering calculations we write the wavefunction as the sum of an incoming plane wave
and a scattered beam, ψ = ψi + ψdiff, where ψdiff is the solution at asymptotically large
times given by

ψdiff(x) = −2m̂e

∫
d4x′

∫
d3p

2Ep(2π)3
Λ+

[
A(x′)ψ(x′)γ0

]
e−̂p·(x−x′). (3.49)

This can be written as a sum over final states

ψdiff(x) =
∫

d3pf

2Ef (2π)3
ψf (x), (3.50)

where the subscript on ψf (x) labels the final momentum and the final states are plane waves
of the form

ψf (x) ≡ ψfe−̂pf ·x ≡ −̂e

∫
d4x′[pfA(x′)ψ(x′) + mA(x′)ψ(x′)γ0]e−̂pf ·(x−x′). (3.51)

With this definition the number of scattered particles is given by

∫
d3xγ0 ·Jdiff =

∫
d3pf

2Ef (2π)3

[
γ0 ·Jf

2Ef

]
≡

∫
d3pf

2Ef (2π)3
Nf (3.52)

where we have defined the number density per Lorentz invariant phase space interval to be

Nf ≡
γ0 ·Jf

2Ef
=

γ0 ·(ψfγ0ψ̃f )
2Ef

=
ρf

2m
. (3.53)

The Born series perturbative solution is generated by iterating (3.41). In the first order
Born approximation this amounts to simply replacing ψ(x′) by ψi(x′). For plane waves of
particles we have

ψ(x) = ψe−̂p·x and mψγ0 = pψ (3.54)



28 CHAPTER 3. ELECTRON SCATTERING IN THE SPACETIME ALGEBRA

so the final states become

ψf = −̂e

∫
d4x′[pfA(x′) + A(x′)pi]ψie

̂q·x′ (3.55)

= −̂e[pfA(q) + A(q)pi]ψi (3.56)

where q ≡ pf − pi.
More generally we define

ψf = Sfiψi (3.57)

where Sfi is the scattering operator which rotates and dilates the initial states into the final
states. Here the f and i indices label the initial and final momenta and the initial spin,
so in general Sfi = Sfi(pf , pi, Ŝi). However Sfi does not depend on the final spin—instead
the final spin is determined from the initial spin by a rotation encoded in Sfi. Since Sfi

consists of a rotation and dilation it is convenient to decompose it as

Sfi = ρ
1/2
fi Rfi (3.58)

where Rfi is a rotor. There is no eIβ part since we have particles scattering to particles,
not a mixture of particles and antiparticles. The cross-section will be determined by the
ρfi factor, as detailed in the next section. The rotor Rfi rotates states with momentum pi

into states with momentum pf . It also relates the initial and final spins by

Ŝf = RfiŜiR̃fi (3.59)

so the rest spins are related by

Ŝ0
f = L̃f ŜfLf = L̃fRfiŜiR̃fiLf = L̃fRfiLiŜ

0
i L̃iR̃fiLf . (3.60)

We therefore define the rest spin scattering operator

Ufi ≡ L̃fRfiLi (3.61)

so that
Ŝ0

f = UfiŜ
0
i Ũfi. (3.62)

The rest spin scattering operator and the cross-section contain all the information about
scattering of states with momentum pi and spin Ŝi into states with momentum pf .

The form of the external line Feynman propagator (3.46) ensures that Sfi is of the form

Sfi = −̂(pfM + Mpi) (3.63)

where in the Born approximation example M = eA(q). However in general M can have
some ̂-dependence in which case we can write

Sfiψi = −̂(pf [Mr + ̂Mj ] + [Mr + ̂Mj ]pi)ψi (3.64)
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where Mj and Mr are independent of ̂. Using ̂ψi = ψiΣ = Ŝiψi and the fact that Ŝi and
pi commute this can be written

Sfi = −̂(pfM + Mpi) (3.65)

where
M = Mr + MjŜi (3.66)

now depends on the initial spin. We can thus replace dependence on the ‘imaginary’ ̂ with
dependence on the spin bivector.

Using mL2 = pγ0 we can obtain Ufi from

Ufi ∝ Lfγ0MLi + L̃fMγ0L̃i. (3.67)

3.7 Positron scattering and pair annihilation

Adapting the above results to positron scattering is straightforward. We just consider a
negative energy plane wave coming in from the future and scattering into the past, so
ψi(x) = ψ2e

̂p2·x and
Sfiψi = −̂(−p1Mψi + Mψiγ0) (3.68)

where p1 is the incoming positron momentum and p2 is the outgoing momentum. This then
gives

Sfi = ̂(p1M + Mp2), (3.69)

amounting to the substitution pf → −p1, pi → −p2.
The other case to consider is when the incoming electron gets scattered into the past,

corresponding to pair annihilation. In this case we have

Sfi = −̂(−p2M + Mp1) (3.70)

where p1 and p2 are the incoming momenta of the electron and positron respectively. In
this case we can decompose Sfi as

Sfi = ρ
1/2
fi IRfi (3.71)

since Sfi must now contain a factor of I to map electrons into positrons. This also implies

SfiS̃fi = −ρfi. (3.72)

3.8 Cross-sections

The scattering rate into the final states per unit volume per unit time is given by

Wfi =
1

V T
Nf =

1
V T

γ0 ·Jf

2Ef
=

ρf

2mV T
(3.73)
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where ρf is given simply by
ρf = |Sfi|2ρi = ρfiρi. (3.74)

Here we have defined
|Sfi|2 ≡ |SfiS̃fi| = ±SfiS̃fi (3.75)

where plus sign corresponds to electron to electron and positron to positron scattering, the
minus sign to electron-positron annihilation. The cross-section is defined as

dσ =
Wfi

Target density× Incident flux
. (3.76)

When Sfi is of the form

Sfi = −̂(2π)4δ4(Pf − Pi)Tfi (3.77)

where the delta function ensures momentum conservation (Pf = Pi) we have

|Sfi|2 = V T (2π)4δ4(Pf − Pi)|Tfi|2. (3.78)

Working in the Ji frame the target density is just ρi, so writing the incident flux as χ we
have

dσ =
1

2mχ
(2π)4δ4(Pf − Pi)|Tfi|2. (3.79)

Alternatively we may have elastic scattering with just energy conservation (Ef = Ei) and

Sfi = −̂2πδ(Ef −Ei)Tfi. (3.80)

In this case
|Sfi|2 = 2πTδ(Ef − Ei)|Tfi|2. (3.81)

A target density of 1/V and an incident flux of |J i| = ρi|pi|/m then gives

dσ =
π

|pi|
δ(Ef − Ei)|Tfi|2. (3.82)

Above we have considered the total number of particles scattered. If we are interested
in the final spin we can find it using the spin scattering operator. However we might also
like to consider the cross-section when we only observe particles with final spins in a certain
plane Ŝo (where Ŝo·pf = 0). This is particularly relevant in examples like electron-positron
annihilation where ψf is actually an input state and we would like to calculate the cross-
section for arbitrary initial spins.

The spin projection operators into the Ŝo plane are

χ±(ψ) = 1
2(ψ ∓ ŜoψΣ) (3.83)

and we are interested in scattering into

χ±(ψf ) = χ±(Sfiψi). (3.84)



3.9. COULOMB SCATTERING 31

Now if Sfi is in the form (3.63) we have

χ±(Sfiψi) = −1
2

[
(pfM + Mpi)ψiΣ± Ŝo(pfM + Mpi)ψi

]
(3.85)

= −1
2

[
(pfM + Mpi)Ŝi ± Ŝo(pfM + Mpi)

]
ψi (3.86)

= −1
2

[
pf (MŜi ± ŜoM) + (MŜi ± ŜoM)pi

]
ψi. (3.87)

Defining χ±(ψf ) = S±fiψi the scattering rate will be proportional to ρ±fi given by

|S±fi|2 =
〈
(m2M + pfMpi)(M̃ ∓ ŜiM̃Ŝo)

〉
. (3.88)

If we sum over final spins the Ŝo term cancels out and we get the expected result for the
total ρfi:

|Sfi|2 = 〈(pfM + Mpi)(M̃pf + piM̃)〉 = 2〈m2MM̃ + pfMpiM̃〉 (3.89)

3.9 Coulomb scattering

As our first simple example we consider the first Born approximation in electron Coulomb
scattering where we have an external field given by

A(x) =
−Ze

4π|x|γ0. (3.90)

In the first Born approximation M is given by M = eA(q) where the Fourier transform of
A(x) is

A(q) = −2πZe

q2
δ(Ef −Ei)γ0 (3.91)

and q ·γ0 = Ef − Ei. Writing

Sfi = −̂2πδ(Ef − Ei)Tfi (3.92)

and using energy conservation we have

Tfi = −Ze2

q2
(2E + q) (3.93)

so that the formula for the cross-section becomes

dσ =
(

Ze2

q2

)2
π

|pi|
δ(Ef − Ei)(4E2 − q2)

d3pf

2Ef (2π)3
. (3.94)

Using d3pf = |pf |EfdEfdΩf we recover the Mott cross-section

(
dσ

dΩf

)

Mott

=
Z2α2

q4
(4E2 − q2) =

Z2α2

4p2β2 sin4(θ/2)

(
1− β2 sin2(θ/2)

)
, (3.95)
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where

q2 = (pf − pi)
2 = 2p2(1− cos θ) and β = |p|/E. (3.96)

The derivation is manifestly independent of initial spin, so the cross-section is spin inde-
pendent. Of course the final and initial spins will be related by the rest spin scattering
operator Ufi, where

Ufi ∝ LfLi + L̃f L̃i ∝ (E + m)2 + pfpi. (3.97)

If Ufi rotates by an angle δ in the B̂ plane (B̂2 = −1) it is given by

Ufi = eδB̂/2 = cos(δ/2) + B̂ sin(δ/2). (3.98)

So we see that the rotation is in the pf∧pi plane and by an angle δ given by

tan(δ/2) =
|〈Ufi〉2|
〈Ufi〉 =

|pf∧pi|
(E + m)2 + pf ·pi

=
sin θ

(E + m)/(E −m) + cos θ
. (3.99)

Similar derivations of these result using the STA approach have been given before [3, 22].

3.10 Compton scattering

In Compton scattering one electron interacts with two photons. We can therefore apply
the above formalism is a somewhat heuristic way by using plane waves to represent the
potentials of the two photons. There are two Feynman diagrams to consider which give two
terms of the form

M12 = e2

∫
d4x′

∫
d4x′′

∫
d4p

(2π)4
A1(x′)

pA2(x′′) + A2(x′′)pi

p2 −m2 + ̂ε
êx′·(pf−p)êx′′·(p−pi) (3.100)

where
A(x) = εe∓̂k·x (3.101)

is different at each vertex and ε2 = −1. Performing the integrations and summing the two
contributions we have

M = e2(2π)4δ4(pf + kf − pi − ki)
[
εf

(pi + ki)εi + εipi

2ki ·pi
+ εi

(pi − kf )εf + εfpi

−2pi ·kf

]
. (3.102)

Choosing pi ·εi = pi ·εf = 0 this is simply

M = e2(2π)4δ4(pf + kf − pi − ki)
(

εfhiεi

2ki ·pi
+

εikf εf

2pi ·kf

)
. (3.103)

Writing
Sfi = −̂(2π)4δ4(pf + kf − pi − ki)Tfi (3.104)
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and using (3.89) we then have

|Tfi|2 = e4

〈
m2εfkiεiεfkf εi + pf εfkiεipiεfkf εf

ki ·pikf ·pi
+

pf εfkiεipiεikiεf

2(ki ·pi)2
+

pf εikf εfpiεfkf εi

2(kf ·pi)2

〉
.

(3.105)
The identities we need to calculate are now the same as in the traditional approach, only
now we know that the result is independent of initial spin since we have not done a spin
sum. Using momentum conservation we know

pf + kf = pi + ki kf ·pi = ki ·pf pi ·ki = pf ·kf . (3.106)

Applying these the result becomes, after some work,

|Tfi|2 = e4

[
4(εi ·εf )2 − 2 +

pi ·kf

pi ·ki
+

pi ·ki

pi ·kf

]
. (3.107)

To calculate the cross-section we work in the frame where the electron is initially at rest
(pi = mγ0). The incoming photon flux is 2k0

i so we have

dσ = (2π)4δ4(pf + kf − pi − ki)
|Tfi|2
2m2k0

i

d3kf

2k0
f (2π)3

d3pf

2Ef (2π)3
. (3.108)

Now ∫
d3pfd3kfδ4(pf + kf − pi − ki) = (k0

f )2
Efk0

f

mk0
i

dΩ, (3.109)

where we have done the integral over the final electron’s momentum since we are primarily
interested in the scattering of the photon. In the lab frame the result is therefore

dσ

dΩ
=

(
kf

ki

)2 |Tfi|2
4m2(4π)2

(3.110)

=
α2

4m2

(
kf

ki

)2 [
kf

ki
+

ki

kf
+ 4(εf ·εi)2 − 2

]
(3.111)

in agreement with the Klein-Nishina formula. Again, the difference is that this derivation
applies regardless of the initial electron spin. Of course if we had used circularly polarized
photons we would have introduced some ̂-dependence and the result would have become
spin-dependent.

3.11 Pair annihilation

A process closely related to Compton scattering is electron-positron annihilation. We just
have to take account of the fact that the ‘out’ state is a positron so the final states are of
the form

ψf (x) ≡ ψfêpf ·x ≡ −̂e

∫
d4x′[−pfA(x′)ψ(x′) + mA(x′)ψ(x′)γ0]êpf ·(x−x′). (3.112)
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Writing
Sfi = −̂(−pfM + Mpi) (3.113)

we have two terms of the form

M12 = e2

∫
d4x′

∫
d4x′′

∫
d4p

(2π)4
A1(x′)

pA2(x′′) + A2(x′′)pi

p2 −m2 + ̂ε
e−̂x′·(pf+p)êx′′·(p−pi) (3.114)

where
A(x) = εêk·x (3.115)

is different at each vertex and ε2 = −1. As for Compton scattering we now choose pi ·ε1 =
pi ·ε2 = 0 and sum the two contributions to get

M = e2(2π)4δ4(pf + pi − k1 − k2)
(

ε2k1ε1
2k1 ·pi

+
ε1k2ε2
2pi ·k2

)
. (3.116)

For general positron and electron spins we should use (3.88) to calculate the cross-section.
However if either ψf or ψi are unpolarized the spin dependence will cancel out and the
average just introduces a factor of two into equation (3.89). In this case |Tfi|2 is obtained
from the Compton case by the substitution pf → −pf and ki → −k1, and an overall sign
change because TfiT̃fi < 0 in this case:

|Tfi|2 = −e4

2

[
4(εi ·εf )2 − 2− pi ·k2

pi ·k1
− pi ·k1

pi ·k2

]
. (3.117)

To get the cross-section just divide by flux factors and perform the integral as usual.

3.12 Second order Coulomb scattering

Second order Coulomb scattering is interesting as it is spin-dependent and so provides
a good testing ground for our calculation techniques. To avoid problems with divergent
integrals the potential is replaced with the screened potential

A(x) = −e−λ|x|Ze

4π|x| γ0 (3.118)

and the Coulomb result found in the limit λ goes to zero [23, 24]. For this potential the first
order analysis above can be applied with M given by

eA(q) = − 2πZe2

λ2 + q2
δ(Ef − Ei)γ0. (3.119)

To iterate to second order (3.51) is used, with the substitution

ψ(x′) = ψie
−̂pi·x′ + e

∫
d4x′′

∫
d4k

(2π)4
kA(x′′) + A(x′′)pi

k2 −m2 + ̂ε
ψie

̂x′′·(k−pi)e−̂k·x′ (3.120)
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giving the extra contribution to M

M ′ = e2

∫
d4x′

∫
d4x′′

∫
d4k

(2π)4
A(x′)

kA(x′′) + A(x′′)pi

k2 −m2 + ̂ε
êx′·(pf−k)êx′′·(k−pi). (3.121)

Carrying out the x′ and x′′ integrations and using one of the resultant δ-functions we have

M = 2πδ(Ef − Ei)MT (3.122)

where the extra contribution to MT is

M ′
T = e2

∫
d3k

(2π)3
A0(pf − k)A0(k − pi)

k2 −m2 + ̂ε
γ0[kγ0 + γ0pi] (3.123)

and
A0(p) =

∫
d3xe−p·xγ0 ·A(x) =

−Ze

λ2 + p2
. (3.124)

Using
k2 −m2 = p2

i − k2 (3.125)

and the integrals

I1 + 1
2(pi + pf )I2 =

∫
d3k

(2π)3
1 + k

[(pf − k)2 + λ2][(pi − k)2 + λ2](p2
i − k2 + ̂ε)

(3.126)

we have
M ′

T = Z2e4
[
γ0

1
2(pi + pf )I2 + (pi + γ0E)I1

]
. (3.127)

In the limit λ → 0 our total MT to second order is therefore

MT =
−Ze2

q2
γ0 + Z2e4

[
(Eγ0 − 1

2 [pf + pi])I2 + (pi + γ0E)I1

]
(3.128)

where the integrals are [24]

I1 =
−̂

16π|p|3 sin2(θ/2)
ln

2|p| sin(θ/2)
λ

(3.129)

I2 =
1

16π|p|3 cos2(θ/2)

{
π[sin(θ/2)− 1]

2 sin2(θ/2)
− ̂ ln

λ

2|p|
}

+
I1

cos2(θ/2)
. (3.130)

We see that M has some ̂ dependence, so writing I1 = (A + C)̂ and I2 = B + Ĉ where
A, B, and C are scalars, and replacing the ̂-dependence with Ŝi-dependence, this becomes

MT = γ0

[
−Ze2

q2
+ EZ2e4

{
B + (2C + A)Ŝi

}]
+ Z2e4

[
pi(AŜi −B)− 1

2q(B + CŜi)
]
.

(3.131)
The term proportional to q does not contribute to Tfi. Using

pfpi + m2 = E(2E + q)− p2 − pfpi (3.132)
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we have

Tfi = (2E + q)
[
−Ze2

q2
+ 2EZ2e4(A + C)Ŝi

]
+ Z2e4(p2 + pfpi)(B −AŜi). (3.133)

Keeping terms up to α3 the cross-section is governed by

|Tfi|2 = (4E2 − q2)
Z2e4

q4
− 4Z3e6

q2

[
EB(p2 + pf ·pi) + mA(pi∧pf )·Ŝ0

i

]
(3.134)

where Ŝ0
i is the initial rest spin. As expected the divergent parts of the integrals have

cancelled out, and we are only left with the finite terms B and

A =
ln sin(θ/2)

16π|p|3 cos2(θ/2)
. (3.135)

The cross-section for unpolarized scattering is found by averaging over the initial spin. This
gives the spin-independent part of the cross-section since the spin dependent part averages
to zero. The α3 contribution is therefore

dσ

dΩf

′
= −4Z3e6BE

4(2π)2q2
(p2 + pf ·pi) (3.136)

=
πα3Z3E[1− sin(θ/2)]

4|p|3 sin3(θ/2)
. (3.137)

Hence the unpolarized cross-section, including the second Born approximation but ignoring
radiative corrections, is

dσ

dΩf
=

(
dσ

dΩf

)

Mott

{
1 + Zαπ

β sin(θ/2)[1− sin(θ/2)]
1− β sin2(θ/2)

}
(3.138)

in agreement with the result obtained by Dalitz [23] using the conventional matrices and
spin-sums approach.

3.13 Spin dependence and double scattering

As an example of handling spin dependence we can work out the asymmetry parameter
for double scattering from a Coulomb potential. The idea is that since the second order
correction to Coulomb scattering is spin dependent the scattered beam will be partially
polarized even with an unpolarized incident beam. The scattered beam can then impinge
on a second target, which leads to an observable asymmetry in the scattered intensity. The
setup is shown in Figure 3.1. The asymmetry was first worked out by Mott [25, 26].

The first thing we need to know is the spin after the first scattering. This is given by

Ŝf = RfiŜiR̃fi (3.139)
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T

PSfrag replacements
φ

Figure 3.1: A double scattering experiment. An incoming unpolarized beam scatters off
one target and then off a second target. The dependence on φ, the angle of the second
scattering to the plane of the first scattering, is determined by the asymmetry parameter δ.

so we have

Ŝf ∝ TfiŜiT̃fi =
Z2e4

q4
(2E + q)Ŝi(2E − q)− 2Z3e6A

q2

〈
(p2 + pfpi)(2E − q)

〉
2

(3.140)

where we have only kept the lowest order terms in the spin dependent and spin-independent
parts. We now define S0 to be the polarization in the plane Ŝ0. This is just a bivector in
the plane of Ŝ0 with modulus equal to the polarization of the beam. Since the incoming
beam is taken to be unpolarized the resultant polarization plane will be given by the spin-
independent part of Ŝf deboosted to rest. To get the polarization we then just divide by
the magnitude of the spin-dependent part:

S0
f = − 2Ze2q2A

(4E2 − q2)
L̃f

〈
(p2 + pfpi)(2E − q)

〉
2
Lf (3.141)

=
2Ze2q2A

(4E2 − q2)
2mpi∧pf . (3.142)

The spin-dependent part of the cross-section for the second scattering is then given by
(

dσ

dΩf

)

spin

= −4Z3e6mA2

q2
2(2π)2

(pf∧p2)·S0
f (3.143)

= −64(2π)2Z4α4q2
1m

2A1A2

q2
2(4E2 − q2

1)
(pf∧p2) · (pi∧pf ) (3.144)

where the 1 and 2 subscripts refer to the first are second scattering respectively (e.g. q2 =
p2− pf ). We see that the asymmetry will depend on the cosine of the angle φ between the
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pf∧p2 and pi∧pf planes. The asymmetry parameter δ is defined so that the final intensity
depends on φ through the factor

1 + δ cosφ. (3.145)

In the case where pi ·pf = pf ·p2 = 0 (pi ·p2 = −p2 cosφ) we find that the first non-zero
contribution to the asymmetry factor is

δ =
64(2π)2Z4α4m2A2

(4E2 − q2)
p4 q4

Z2α2(4E2 − q2)
(3.146)

= Z2α2(ln 2)2
β2(1− β2)
(2− β2)2

(3.147)

in agreement with the answer quoted by Dalitz [23]. It is of course only the first approxi-
mation, and for large Z nuclei higher order corrections will be far from negligible.

3.14 The partial spin-sum approach

The above formalism seems to work well for single particle scattering. Here we show how
we can adapt a more traditional approach in more complicated cases, demonstrating the
flexibility of the STA formalism. The scattering operator approach could equally well be
used in the more complicated case, as we show below.

We use the two basis states ur to write (3.51) as

ψf = −̂e

∫
d4x′

∑
r

ur(pf )〈ũr(pf )A(x′)ψiγ0〉Sêpf ·x′ (3.148)

=
∑

r

ur(pf )Sr
fi (3.149)

where Sr
fi is the traditional S-matrix. The total number density per Lorentz invariant phase

space interval is then
Nf =

∑
r

|Sr
fi|2. (3.150)

As an example we consider electron-muon scattering (following, for example, Bjorken
and Drell [27]) in which A is given by

A(x) =
∫

d4x′DF (x− x′)J(x′) (3.151)

and J(x′) is the ‘complex’ conserved current given by

Ja = e〈ũsγaψ2γ0〉S . (3.152)

Defining T rs as usual we have

T rs = −e2

q2
〈ũrγaψ1γ0〉S〈ũsγ

aψ2γ0〉S . (3.153)
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where q = p′1 − p1 = p2 − p′2 and dashed variables correspond to the final states. Summing
over r and s

|T |2 =
e4

q4
〈γ0ψ̃1γ

b(p′1γ
a + γap1)ψ1〉S〈γ0ψ̃2γb(p′2γa + γap2)ψ2〉S (3.154)

=
2e4ρ1ρ2

m1m2q4

[
〈γb(p′1γ

a + γap1)p1〉〈γb(p′2γa + γap2)p2〉 (3.155)

− 〈γb(p′1γ
a + γap1)p1Ŝ1〉〈γb(p′2γa + γap2)p2Ŝ2〉

]
(3.156)

=
2e4ρ1ρ2

m1m2q4

[
p′1 ·p′2p1 ·p2 + p′2 ·p1p2 ·p′1 −m2

1p
′
2 ·p2 + m2

2p
′
1 ·p1 + 2m2

2m
2
1 (3.157)

− [q ·(Ŝ1∧p1)]·[q ·(Ŝ2∧p2)]
]
. (3.158)

This approach differs from the normal one in that we have only done one spin sum over
the final spins. We can therefore explicitly retain information about the initial spins, and
calculations that are spin-independent will be manifestly so. Spin averaging simply amounts
to removing spin dependent terms in the cross-section.

The same result could be obtained using the scattering operator approach using

M = eDF γaJa (3.159)

and summing over the final spin of the other particle. One ends up with exactly the
same equation. However the scattering operator approach may be better for calculating
spin effects. If we are interested in the spin dependence of a particular fermion line the
scattering operator approach works well once we have summed over the spins of the other
particles. For example we can calculate the final spin and polarization in the same way
as we did for Coulomb scattering. In this approach we still have to perform a spin sum,
but only over the spins of the other particles. We could of course introduce spin projection
operators to single out particular spins of the other particles if necessary.

3.15 Conclusions

We have seen how Hestenes’ STA formulation of Dirac theory provides a useful and elegant
method of performing cross-section calculations. Spin is handled in a simple manner, and the
logic of calculating cross-sections is simplified considerably. We do not perform unnecessary
spin sums and spin dependence is manifest in the spin bivector dependence of the scattering
operator. It’s a simple matter to calculate spin precessions, polarizations and spin dependent
results, and the results are automatically expressed in terms of physical spin bivectors
and the other scattering parameters. We can perform unpolarized calculations simply by
averaging over spins.

In the multiparticle case things are more complicated. We do not have a neat method for
performing arbitrary spin dependent calculations, and still have to resort to spin sums over
terms involving complex conserved currents. However we can still write down a scattering
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operator for any given fermion line, retaining the benefits of the scattering operator for
calculations involving the spin of the particle.



Chapter 4

Gauge Theories of Gravity

In this chapter we review the formulation of gauge theories of gravity and consider some
extensions. We study a formulation using Geometric Algebra, relate it General Relativity
and other formulations, and review the key features. We then extend the gauged symmetries
to include local scale invariance and discuss the properties of a scale invariant action. The
field equations are derived and gauge fixing discussed. By gauge fixing appropriately we
recover standard (non-scale invariant) gauge theory gravity with the addition of a massive
vector field that only couples to scalar fields. We compare our approach to corresponding
theories in GR and mention possible further extensions.

4.1 Introduction

It is now many years since Einstein formulated his General Theory of Relativity (GR), and
we now have convincing experimental confirmation of some its key predictions. The theory
asserts that spacetime is curved and that the curvature is determined by the stress-energy
tensor and boundary conditions. GR is a beautiful geometrical theory with much theoretical
attractiveness. However it does have its drawbacks. For example GR only works with a
symmetric stress-energy tensor, so it is not immediately clear what happens when matter
with spin is present (which has an antisymmetric stress-energy tensor). The problems with
quantizing the theory are also well documented [28].

In order to make GR consistent with matter with spin one can incorporate a torsion
field. There are many ways of doing this so that the theory is consistent with GR when
the torsion can be neglected [29–32]. The theories we study here are those based on gauge
symmetries, which we collectively call Gauge Theory Gravity (GTG). Such theories have
been formulated numerous times in slightly different ways and have been called ECKS,
Poincaré, Einstein-Cartan, or U4 spin-torsion theories [31–35]. Here we base our work on
GTG as formulated in Geometric Algebra by Lasenby et al. [5]. The essential symmetries
to gauge are invariance under local rotations (Lorentz transformations) and displacements
(diffeomorphisms). We refer to a theory with these symmetries as a Poincaré gauge theory.
With an appropriate choice of action the Poincaré gauge theory reproduces the results of
GR for all the standard tests, but also incorporates torsion in a natural manner. In terms

41
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of GR this essentially amounts to replacing the connection defined in terms of the metric
with a free field that has a field equation determined by varying an action.

After reviewing GTG, relating our formulation and notation to other works and re-
viewing some key results, we move on to consider extending the gauge symmetries. The
most natural extension is to consider a local scaling symmetry. This then requires the
construction of a fully locally scale invariant theory.

The idea of a locally scale invariant theory of gravity goes back a long way. Shortly
after Einstein’s theory was developed Weyl proposed an extension of Riemannian geometry
in which vectors not only change direction on parallel displacement around a closed loop
but also change their length. Weyl’s non-Riemannian geometry was the first example of a
gauge theory, the gauge group being local scale transformations. To enforce this new gauge
symmetry one has to introduce a vector gauge field which Weyl identified with the vector
potential of electromagnetism. Weyl’s theory was a bold, though ultimately unsuccessful
attempt to provide a geometric picture of electromagnetism in the same way that general
relativity (GR) provided a geometric picture of gravity. The theory was rejected because it
seemed to conflict with the absolute length scales appearing in quantum phenomena.

Dirac [36] took up Weyl’s theme as a way of implementing his Large Numbers Hypoth-
esis. He thought the gravitational constant could change with time in order to keep the
dimensionless number formed from fundamental constants approximately equal to the age
of the universe expressed in atomic units. To this end his gravitational Lagrangian coupled
a scalar field to the Ricci scalar, forming a correctly scale invariant Lagrangian.

We now know that local scale invariance is not the symmetry that generates electromag-
netism; however that does not mean that a scale gauge symmetry should be rejected out of
hand. The subject has since been studied by various authors, for instance see [37–46].

In the gauge theory approach to gravity all observables must be gauge invariant, in par-
ticular they must be scale gauge invariant. The result of a measurement is a dimensionless
number, we do not measure dimensionful quantities. Since observables are merely ratios
of dimensionful quantities there is a global invariance under rescaling of all lengths (and
masses, etc, appropriately). One could equally well regard this as invariance under change
of units. Whether one prefers the passive or active viewpoint is largely a matter of taste,
though it seems more natural to consider physics resulting from invariance under active
transformations. The idea is to make this global scaling symmetry a local symmetry by the
introduction of a gauge field (the “Weylon”). In the original formulation it was thought that
local standards of length would lead to ‘non-integrability of length’, a highly non-desirable
feature of Weyl’s geometric approach. In the gauge theory approach it is clear that this is
not the case. Observable ratios of lengths are integrable and the theory becomes acceptable.

4.2 Poincaré-Einstein-Cartan theory

Here we briefly review the gauging arguments of GTG, formulated in the STA. A fuller
account can be found in [5].

In field theories the equations of motion are derived from an action principle. For
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example the massless Dirac equation arises from minimization of

S =
∫
|d4x|〈∇ψΣγ0ψ̃〉. (4.1)

The global symmetry under phase changes can be made local by introducing a covariant
derivative involving a gauge field, the vector potential. Adding a term in the gauge-invariant
field strength to the action allows one to derive the equations of electromagnetism. This
is how the gauge theory of electromagnetism is derived, and we now wish to derive gravity
from an analogous gauging argument.

The action has a global displacement symmetry x → x + c, where c is a constant.
However the action is not invariant under local displacements (diffeomorphisms) where
each point is moved by a different amount

x → f(x). (4.2)

The first gauge principle of gravity is that the action should be invariant under local dis-
placements of this kind. Clearly this is automatic for scalar and spinor fields if they are
undifferentiated since φ′(x) = φ(x′). However the gradient with respect to x′ = f(x) is

∇x′ = f̄−1(∇x, x) (4.3)

where we have used the inverse of the adjoint of f
¯
(a, x) ≡ a ·∇xf(x). To ensure that

derivatives transform in the same way as the fields we define the displacement gauge function
h̄(a, x) such that

h̄′(a, x) = h̄(f̄−1(a, x), f(x)). (4.4)

The displacement covariant derivative now transforms as we require

h̄(∇x, x) → h̄(∇x′ , x
′). (4.5)

The h̄-field is the first gauge field of GTG. From now on we shall drop the explicit x-
dependence, and the local displacement invariant Dirac action is

S =
∫
|d4x| deth−1〈h̄(∇)ψΣγ0ψ̃〉. (4.6)

To see whether the h̄-field has physical effects consider the displacement covariant derivative

La = γa ·h̄(∇). (4.7)

The commutator of these derivatives gives

[La, Lb] = e
¯
(Lah¯b − Lbh¯a)·h̄(∇) (4.8)

where e
¯a ≡ h

¯
−1
a is the inverse h

¯
-function. Now

[Lah¯b − Lbh¯a]·γc = (γb∧γa)·(h̄(∇)∧h̄c). (4.9)
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so the condition that the commutator is zero is

h̄(∇)∧h̄c = 0 =⇒ ∇∧ēc = 0. (4.10)

Since this in general will not be the case the h̄ field has physical effects as well as ensuring
reparameterization invariance of the action.

Although we have formulated the gauging arguments in the flat Minkowski STA the
spacetime we observe will be curved—we observe position gauge invariant quantities, and
these will involve the h̄-function which will not in general be a constant. The metric gab

which is used extensively in GR can be formed from the h̄-function and its inverse as

gab = e
¯a ·e¯b gab = h̄a ·h̄b (4.11)

Clearly ēa is related to the vierbein, and this relationship is explained in detail in the next
section. It is also useful to define the scalars

hab ≡ γa ·h¯b eab ≡ γa ·e¯b (4.12)

where naturally habe
b
c = δac.

The displacement invariant action is also invariant under rotations (active Lorentz trans-
formations) of the fields where

ψ → Rψ h̄a → Rh̄aR̃ (4.13)

and R is a rotor. The transformation property of the h̄-field follows from the observation
that h̄(∇)φ, where φ is a scalar field, should transform as a covariant vector. We make
the rotation invariance local by defining the bivector rotation gauge function Ω

¯a, the ‘spin
connection’, that transforms as

Ω
¯a → RΩ

¯aR̃− 2∇aRR̃. (4.14)

This is used to define the rotation-gauge covariant derivative acting on a spinor ψ or co-
variant vector V (like h̄(∇)) as

Daψ ≡ (∇a + 1
2Ω
¯a)ψ DaV ≡ ∇aV + Ω

¯a×V. (4.15)

The explicit form of the derivative in terms of the gauge fields depends on whether it is acting
on a spinor or a covariant multivector since they transform differently under rotations. The
commutator of the rotation gauge covariant derivatives defines the Riemann tensor R

¯ ab:

[Da, Db]M ≡ R
¯ ab×M = (∇aΩ¯ b −∇bΩ¯a + Ω

¯a×Ω
¯ b)×M (4.16)

We can now construct a displacement and rotation gauge covariant derivative from Da using
the h̄-function

Da ≡ hb
aDb. (4.17)

Here we start to adopt the useful convention that fully covariant quantities like Da are
written in calligraphic type.
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Under rotations a covariant tensor V̄(a) will transform as

V̄(a) → RV̄(R̃aR)R̃ (4.18)

and the covariant derivative of a tensor is therefore given by

DaV̄b ≡ LaV̄(γb) + ω
¯a×V̄(γb)− V̄(ω

¯a×γb). (4.19)

where ω
¯a ≡ hb

aΩ¯ b. The result is then another covariant tensor of one higher rank, and
contractions commute with the covariant derivative. This notation, where the action of the
derivative is implied by the transformation properties of what it acts on, is a little different
from that in [5] but much closer to traditional tensor notation.

For the action on higher rank tensors we simply extend the definition. For a tensor
V̄cd... = V̄(γc, γd, . . . ) we have

DaV̄cd... ≡ LaV̄(γc, γd, . . . ) + ω
¯a×V̄(γc, γd, . . . )− V̄(ω

¯a×γc, γd, . . . )− V̄(γc, ω¯a×γd, . . . )− . . .
(4.20)

In terms of the scalars Vbcd... ≡ γb ·V̄cd... and Γc
ab ≡ γc ·(ω

¯a×γb) = (γb∧γc)·ω
¯a this is

DaVbcd... = LaVbcd... − Γe
abVecd... − Γe

acVbed... − Γe
adVbce... − . . . (4.21)

exactly as one would write in tensor notation.
Elements of the background STA like γa do not transform under rotations of the fields,

and hence Dbγa = 0. The covariant derivative acting on Aa ≡ γb·A, where A is a covariant
vector, is therefore

DaAb ≡ Da(γb ·A) ≡ γb ·(DaA) = LaAb − Γc
abAc. (4.22)

The commutator of the fully covariant derivatives give

[Da,Db]M = R̄ab×M −XabcDcM (4.23)

where R̄ab is the covariant Riemann tensor and Xabc ≡ (γb∧γa) · X̄ c is the torsion. The
torsion bivector X̄ a is the natural covariant field strength for the h̄-function and is given
explicitly by

X̄ a ≡ −eabD∧h̄b = h̄(D∧ēb) (4.24)

The action of the covariant derivative here follows from the rotation transformation law of
the h̄-function (which is not a tensor), so

D∧h̄b = γc∧[Lch̄
b + ω

¯c ·h̄b]. (4.25)

Similarly, in terms of the inverse we have

D∧ēb = ∇∧ēb − γa∧ē(Ω
¯a ·γb) = ∇∧ēb + Ω̄b

c∧ēc (4.26)

where Ω̄ab is the vector adjoint of the Ω
¯ c function defined by

Ω
¯ c ·(γb∧γa) = γc ·Ω̄ab. (4.27)
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The covariant Riemann tensor is the covariant field strength for the rotation gauge field
defined by

R̄ab ≡ hc
ah

d
bR¯ cd (4.28)

and gives a covariant measure of the curvature. Its contractions define the Ricci tensor and
the Ricci scalar

R̄b ≡ γa ·R̄ab R ≡ γa ·R̄a. (4.29)

The same symbol is used for the Riemann tensor, Ricci tensor and Ricci scalar, with the
number of subscripts denoting which is intended (and we shall never need to use Rab =
γa ·R̄b). We can also define the adjoint of the Riemann tensor R̄ab by

(γa∧γb)·R̄cd = R̄ab ·(γc∧γd). (4.30)

To determine the dynamics of the theory we now need to specify an action. We give
details of the derivation of the field equations with various actions in later sections. Here
we briefly review the results for the Einstein-Hilbert action given by

S =
∫
|d4x| deth−1(Lm − 1

2κ
R) (4.31)

where κ ≡ 8πG and Lm is the Lagrangian for the other fields present. This gives the
Einstein-Cartan theory, which is a subset of the possible Poincaré gauge theories one could
obtain using more general actions.

Extremizing with respect to the h̄-field gives the Einstein equation

Ḡa ≡ R̄a − 1
2R̄γa = κT̄ a (4.32)

where T̄ a is the stress-energy tensor derived from Lm

T̄ a ≡ hc
a det h∂h̄c

(Lm det h−1). (4.33)

Varying with respect to the Ω
¯a field gives a second field equation. In terms of the ‘spin’ of

the matter, the bivector S̄a ≡ eab∂Ω
¯

bLm, the equation is

X̄ a + X∧γa = −κS̄a. (4.34)

where X ≡ γa · X̄ a is a vector defined as the contraction of the torsion bivector. When
the spin vanishes this ‘structure equation’ determines ω

¯a in terms of h̄a in the same way
that the connection is determined by the metric in GR. In general (for example for a Dirac
Lagrangian) the spin will not vanish and there will be non-vanishing torsion.

The structure equation is algebraic and completely determines the torsion in terms of the
spin. The torsion therefore does not propagate — in the vacuum the torsion is zero. This
contrasts with the Einstein equation which only determines the Ricci tensor algebraically.
The traceless part of the Riemann tensor does not have to be zero in the absence of matter
and gives us the long range gravitational force as well as allowing for gravitational waves.

The two field equations we have obtained above in the Geometric Algebra formulation of
GTG are equivalent to those obtained for Einstein-Cartan theory using different notation,
for example see [33, 35]. Using a more general action, for example including quadratic
terms, or terms involving the torsion, leads to more general theories in which the torsion
can become propagating. However it is Einstein-Cartan theory that is the simplest extension
of General Relativity.
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4.3 Related formulations: differential forms

In this section we develop a translation scheme to clarify the relation between the GA quan-
tities and those used in differential forms. With the field equations above this demonstrates
that the GTG we are using is locally the same as ECKS or U4 gauge theory. We follow
the forms notation and conventions of [32]. If the reader is unfamiliar with forms they can
safely skip this section.

Consider a set of four scalar functions {xµ(x)} which define a coordinate frame and dual
frame

eµ ≡ ∂x

∂xµ
eµ ≡ ∇xµ. (4.35)

We can define a set of covariant vectors from these via

gµ ≡ h̄(eµ) gµ ≡ e
¯
(eµ) (4.36)

and metric is then given by
gµν = gµ ·gν . (4.37)

Forms are build up from elements dxµ living in the cotangent space. The exterior derivative
translates simply as

d → ∇∧ (4.38)

so our translation of the dxµ are just the eµ. However in GA we do not work with elements
in the cotangent space, but covariant elements like gµ living in ‘STA-space’. The two spaces
are related by the h̄-function. The general scheme for translation is to convert forms into
equivalent GA objects and then apply the h̄-function to map the result into covariant STA
objects.

The forms vierbein generates the metric via

gµν = ηabe
a
µeb

ν (4.39)

so the components of the vierbein translate to

ea
µ → gµ ·γa. (4.40)

The vierbein itself is then
ea = ea

µdxµ → gµ ·γaeµ = ēa, (4.41)

which is of course why we have used this notation for the inverse h̄-function. There is an
unfortunate double use of e here, but it should be clear from the index whether it is the
vierbein or a frame vector.

The components of covariant STA objects are generated by applying gµ and gµ to
generate upstairs or downstairs indices as required. For example for a covector V we have

V = Vµdxµ → V·gµeµ = ē(V) (4.42)

and for the Riemann tensor we have

Rµ
νρσ = (gµ∧gν)·R̄(gσ∧gρ) (4.43)
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so that
Ra

b = 1
2Ra

bµνdxµ∧dxν → ē(R̄a
b) = R̄a

b. (4.44)

Note that the STA Riemann tensor is the adjoint of the forms one. The vierbein is used to
convert Latin and Greek indices, for example

ea
µAµ = gµ ·γaA·gµ = A·γa = Aa. (4.45)

Similarly the inverse vierbein is given by

Ea
µ = γa ·gµ (4.46)

and can be used to convert downstairs indices.
The spin-connection ωa

b of differential forms is a 1-form with two antisymmetric indices.
This is simply Ω̄a

b, the adjoint on the Ω
¯a-function used in GTG. Using this we can now

translate Cartan’s structure equation trivially as follows:

dea + ωa
b∧eb = Xa → ∇∧ēa + Ω̄a

b∧ēb = ē(X̄ a) (4.47)
=⇒ h̄(D∧ēa) = X̄ a (4.48)

where X̄ a defines the covariant torsion bivector (which vanishes in GR). Similarly the Rie-
mann tensor is given by

dωa
b + ωa

c∧ωc
b → ∇̇∧γc(γb∧γa)·Ω̇

¯ c + (γc∧γa)·Ω
¯ e(γb∧γc)·Ω

¯f γe∧γf (4.49)

= −1
2γe∧γc(γb∧γa)·(∇eΩ¯ c −∇cΩ¯ e + Ω

¯ e×Ω
¯ c) (4.50)

= R̄a
b = ē(R̄a

b) (4.51)

The GTG formulation is therefore easily related to similar gauge theory formulations with
differential forms. However using GA we have the advantage of being able to use the
geometric and dot products, which can make life a little easier. We also have no need to
worry about tangent and cotangent spaces, and can construct manifestly covariant objects
in the STA. The main advantage of GTG in the formulation we are using is that equations
can be written in terms of covariant objects that are directly observable quantities.

As we have seen the GA objects are the ‘inside out’ versions of the forms ones—the
natural GA fields are the adjoints of the forms ones. This is because in the GA formulation
we have considered gravitational fields defined on a flat background space, and then gauged
rotations of the fields. In the forms formulations the background space is curved and one
gauges the rotations of a local orthonormal frame. The GA version is therefore rather more
restrictive as we have assumed a trivial background topology. However locally the theories
are equivalent, and if needed one could no doubt modify the background STA to have a
non-trivial topological structure.

One can form the inner product of forms using the Hodge dual. In the GA approach
we have no need to do this since we can just take the inner product of covariant vectors.
However we can nonetheless write down a translation. For two cotangent vectors A and B
the inner product is defined as

A∧?B = gµνAµBν |g|
1
2 dx1∧. . .∧dxn. (4.52)
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Now
A·B = AµBνgµ ·gν = gµνA

µBν (4.53)

so defining C = ?B the forms definition gives to

ē(A)∧C = IA·B deth−1 (4.54)
=⇒ A∧C = IA·B (4.55)
=⇒ C = −IB. (4.56)

(4.57)

At the level of covariant objects the dual therefore simply corresponds to multiplication by
I.

4.4 General Relativity

In this section we review some of the main features of GR, expressed in the language of
GTG when the spin vanishes and the theories are locally equivalent.

In the absence of spin the torsion X̄ a is zero and the commutator of the covariant
derivatives gives the Ricci ‘identity’ of GR

[Da,Db]M = R̄ab×M. (4.58)

Note that in GTG this is really an equation, it is only true if the torsion vanishes.
Since the torsion vanishes we have D∧h̄a = 0. Using the Ricci identity it follows that

D∧D∧h̄a = 0 =⇒ R̄ab∧γb = 0. (4.59)

This is the ‘cyclic identity’ of GR, and summarizes the symmetries of the Riemann tensor.
In particular we have

γc ·(R̄ab∧γb) = 0 =⇒ R̄ac − γb∧(γc ·R̄ab) = 0 (4.60)
=⇒ R̄ac + γb∧(γa ·R̄cb) = 0 (4.61)
=⇒ R̄ac + R̄ca − γa ·(γb∧R̄cb) = 0 (4.62)
=⇒ R̄ab = R̄ab (4.63)

so the Riemann tensor is symmetric. The Riemann tensor is antisymmetric on a,b, and so
can be viewed as a bivector valued function of a bivector. The symmetry relation above
gives 16 constraints and the Riemann tensor therefore has a total of 6×6−16 = 20 degrees
of freedom.

The Weyl tensor W̄ab is defined as the symmetric traceless part of the Riemann tensor
so that

γaW̄ab = 0. (4.64)

(We give the general decomposition of the Riemann tensor in a later chapter.) The Weyl
tensor also has the property that [5]

W̄∗
ab = ∗W̄ab ≡ IW̄ab (4.65)
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where the ‘interior’ dual is given by

W̄∗
ab = 1

2Iγa∧γb∧γd∧γcW̄cd = W̄(Iγa∧γb). (4.66)

The Bianchi identity follows from the Jacobi identity for the covariant derivatives

[Da, [Db,Dc]] + cyclic permutations = 0. (4.67)

Using the Ricci identity to replace the commutators of the covariant derivatives this can be
written

γa∧γb∧γcDaR̄bc = 0. (4.68)

Using the symmetry of the Riemann tensor this then gives the Bianchi identity

D∧R̄ab = 0. (4.69)

Contracting with γa∧γb gives the contracted Bianchi identity

D·Ḡa = 0 (4.70)

which, from the Einstein equation, implies conservation of stress-energy, D·T̄ a = 0. Since
we have used the Ricci equation these Bianchi ‘identities’ will only hold in the absence of
torsion.

The GTG equivalent of the GR infinitesimal diffeomorphism gauge transformation law
is readily obtained. Consider an infinitesimal displacement to

x′ = f(x) = x + δη (4.71)

The inverse of the h̄-function transforms as

e
¯
(a, x) → e

¯
(f
¯
(a), x′) (4.72)

where here
f
¯
(a) = a +∇aδη. (4.73)

Substituting for x′ the transformation law for e
¯a becomes (to first order)

e
¯a → e

¯a + δη ·∇e
¯a + e

¯
(∇aδη). (4.74)

A Killing vector is usually defined by a symmetry of the metric. Here a a Killing vector K
generates an isometry when η = h

¯
(K) and the change in e

¯a can be removed by a rotation
gauge transformation. To determine K we therefore want the rotation gauge covariant
information in

K·h̄(∇)e
¯a + e

¯
(∇ah¯

(K)) = 0 (4.75)

which can be written
LaK +Kbe

¯
(Lah¯b − Lbh¯a) = 0. (4.76)

Assuming zero torsion and using the structure equation this becomes

DaK + γa ·ω¯bKb = 0. (4.77)
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To extract covariant information we dot with γc and symmetrize giving Killing’s equation

D(aKc) = 0. (4.78)

We could equally well have derived this by insisting the metric tensor (which is rotation
invariant) were displacement invariant. However it is useful to see how the same information
can be extracted directly from the h̄-function.

4.5 Extending the gauge symmetries

So far we have only considered Poincaré gauge theory, in which displacements and local
rotations of the fields are gauged. However we could consider enlarging the symmetries.
The most general theories usually considered are metric-affine theories [45] in which a
general linear transformation of the fields is gauged. These include new scale and shear
transformations, as well as the rotations, and can in general be written

Va → LabVb. (4.79)

A shear transformation is governed by the symmetric traceless part of Lab whilst the trace
determines the scale transformation. The anti-symmetric part gives the rotation part we
already have in the Poincaré gauge theory.

The shear transformation can be written in terms of two orthogonal vectors A and
B as Lab = A(aBb). However there are immediate difficulties in writing down a shear
transformation for a spinor. A spin vector ψγψ̃ should transform like a vector, but one
cannot devise a transformation of ψ that would effect this. Metric-affine theories including
shears have to resort to infinite-dimensional spinor representations in order to make things
work [45].

The scale part of the transformation however poses no such problems, and in the re-
mainder of this chapter we consider Weyl-Cartan theory, Poincaré gauge theory with the
addition of gauged local scale invariance of the fields. Scale invariance is well motivated:
the renormalizable field theories of the standard model are scale invariant prior to spon-
taneous symmetry breaking, and one of the fundamental problems with GR is that it is
non-renormalizable because it is not scale invariant.

The only other obvious transformation to consider is where a spinor transforms as
ψ → eIβψ. This leaves invariant terms in the electroweak Lagrangian. However since
eIβ commutes with ψ this is most readily understood as an ‘internal’ symmetry represent-
ing the U(1) electroweak symmetry. (The SU(3) symmetry can be considered as symmetry
under ‘internal rotations’ of the spinor).

4.6 Weyl-Cartan gravity

We now extend GTG as formulated by Lasenby et al. [5] to include local scale transforma-
tions. We define a scale transformation for objects with dimensions of mass as M → eλM .
Length has dimensions of (mass)−1 and so objects with dimensions of length transform
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as L → e−λL. In general a quantity M is described as having conformal weight n if it
transforms as

M → enλM. (4.80)

The h̄-field has weight one and so transforms as

h̄a → eλh̄a. (4.81)

We now try to construct an action that is locally invariant under this transformation
(i.e. when λ can be a function of position).

The Lagrangian for a massive spinor has a term mψψ̃. For this to have dimensions of
(length)−4 to yield a dimensionless action the spinor field must have dimensions of (mass)3/2.
According to our definition spinors therefore have weight 3/2. The kinetic term in the Dirac
Lagrangian is then automatically locally scale invariant as can readily be checked.

However when we have derivatives of a scalar field the kinetic term is not automatically
scale invariant and we need to define a new gauge field in order to maintain local invariance.
The new covariant derivative is given by

D̆a ≡ Da + nKa (4.82)

where under the scaling the new vector gauge field K transforms as

K → K −∇λ. (4.83)

The new scale covariant derivative satisfies Leibnitz rule and scales as

D̆aM → enλD̆aM. (4.84)

The fully covariant derivative is formed in the usual way

D̆a = hb
aD̆b (4.85)

and the covariant version of the gauge field is therefore given by K ≡ h̄aKa.
The transformation law for the K field is the same as that for the photon, which was

what lead Weyl to an identification. Here we regard K as a new field associated with new
physics since we now know that it is not scale symmetry that generates electromagnetism.

In GR the Ricci scalar does not transform homogeneously and can be combined with
derivatives of a scalar field to produce a combination which is overall scale covariant:

φ2R+ 6∂µφ∂µφ. (4.86)

In GTG the Riemann tensor transforms homogeneously at the level of the action and the
analogous term would not be scale covariant. However in GTG we have the torsion tensor
that does not transform homogeneously. Indeed under a scaling the contraction of the
torsion tensor transforms like −3K:

X → eλ[X + 3Dλ]. (4.87)
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One could therefore construct the combination

(Dφ− 1
3Xφ)·(Dφ− 1

3Xφ) (4.88)

that transforms homogeneously, and could form a valid term in the action integral. More
generally we could replace K with −1

3X everywhere to generate scale invariant actions
without introducing a new K field at all. For the moment however we shall stick with the
gauging argument and treat K as a independent field, at least at the level of the action.
This is the procedure most consistent with the gauging arguments for the other symmetries.

The commutator of the fully covariant derivatives now has an additional term for the
field strength H of the K field,

[D̆a, D̆b]M = R̄ab×M − X̆abcD̆cM + nHabM. (4.89)

The field strength is given explicitly by

H ≡ h̄(∇∧K) Hab ≡ (γb∧γa)·H = h
¯b∧h

¯a ·(∇∧K) (4.90)

and the scale covariant torsion is defined in terms of the scale covariant derivative

X̄̆ a ≡ −eabD̆∧h̄b = −eabγ
c∧[Lch̄

b + ω
¯c ·h̄b +Kch̄

b]. (4.91)

We now proceed to construct a gauge invariant action integral of the form

S =
∫
|d4x| det h−1L (4.92)

where L must have weight four. As for electromagnetism we can form a kinetic term in
the K-field is proportional to H · H. Since deth and H · H have weight four this term is
scale invariant. However the Ricci scalar has conformal weight two, so this cannot be in
the Lagrangian on its own. We therefore follow Dirac [36] by introducing a scalar field φ of
conformal weight one and coupling its square to the Ricci scalar. The total Lagrangian is
now

L =
ν2

2
D̆φ · D̆φ− α

2
φ2R− Λφ4 +

β2

2
H · H+ Lm (4.93)

where Lm is the Lagrangian of any other fields. There are other terms quadratic in the
Riemann tensor that could be introduced, but we defer a discussion of these to the next
chapter. To determine the classical field equations we now vary the action with respect to
the four independent fields h̄a, Ω

¯a, K and φ. This procedure is consistent with the gauge
theory formulation and leads to results which differ somewhat from those obtained within
extensions of GR.

4.7 The field equations

The field equations are derived by using the multivector function form of the Euler-Lagrange
equation:

∂Ma(Ldet h−1) = ∇b(∂Ma,b
Ldet h−1) (4.94)



54 CHAPTER 4. GAUGE THEORIES OF GRAVITY

where as usual Ma,b denotes ∇bMa.
Since h̄a is undifferentiated in the action the h̄a equation is

∂h̄a
L = 0

=⇒ αφ2Ga = Ta (4.95)

where Ḡa is the Einstein tensor defined by

Ḡa = R̄a − 1
2aR (4.96)

and T̄ a is the stress-energy tensor defined by

T̄ a = hb
a deth∂h̄b

([L+ 1
2αφ2R] deth−1). (4.97)

This is the new modified Einstein equation. Similarly variation with respect to Ω
¯a gives

the modified structure equation

(D̆φ2)∧γa − φ2(X̄̆ a + X̆ ∧γa) = α−1S̄a (4.98)

where S̄a is the ‘spin’ of the matter as before. In the case where the spin is of Dirac type
the contraction of the spin tensor vanishes [5], γa ·S̄a = 0, so that

γa ·[(D̆φ2)∧γa − φ2(X̄̆ a + X̆ ∧γa)] = 0 (4.99)
=⇒ 2φ2X̆ − 3D̆φ2 = 0. (4.100)

We shall assume this is the case, and can therefore write the field equation as

φ2(X̄̆ a + 1
3 X̆ ∧γa) = −α−1S̄a. (4.101)

Variation with respect to K gives

ν2h
¯
(φD̆φ) + ∂KLm = 1

2 dethβ2∇a(∂K,a[(∇∧K)·h
¯
(H)] det h−1) (4.102)

= −β2 det h∇·[h
¯
(H) deth−1]. (4.103)

Rearranging this becomes

ν2φD̆φ = −β2e
¯
(∇ ·G) deth− e

¯
(∂KLm) (4.104)

where G = h
¯
(H) deth−1. Finally the φ equation gives

−4φ3Λ− αφR+ ∂φLm = −ν2K·D̆φ + ν2 det h∇a[∂φ,a(deth−1φ,bh̄
b)·D̆φ] (4.105)

= −ν2K·D̆φ + ν2(X̆ − Ω
¯a×h̄a + 3K + h̄(∇))·D̆φ (4.106)

= ν2(D̆ + X̆ )·D̆φ (4.107)

Using (4.100) this becomes

4Λ + αφ−2R− φ−3∂φLm = −ν2D̆ · (φ−3D̆φ). (4.108)
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and we can use (4.95) to substitute for R giving

−4Λ + φ−4T + φ−3∂φLm = ν2D̆ · (φ−3D̆φ). (4.109)

where T = γa ·T̄ a.
In [5] there was considerable analysis of the quantity X defined by the contraction of

the torsion tensor. In the absence of the scale symmetry the field equations implied that it
vanished if the spin tensor had zero contraction. Here the Dirac Lagrangian is automatically
locally scale invariant. It gives rise to the field equation

D̆ψΣ = mψγ0 + 1
2 X̆ψΣ (4.110)

where the K in the derivative and in X̆ can be cancelled from both sides to give

DψΣ = mψγ0 + 1
2XψΣ. (4.111)

Instead of the minimally coupled equation

D̆ψΣ = mψγ0 (4.112)

we find that the local scale invariance is maintained by the contraction of the torsion tensor
which, as we know, transforms like the gauge field under scalings. Interestingly we cannot
find any action that would give rise to the latter equation.

4.8 The Einstein gauge

In a scale gauge theory observables must be scale gauge invariant. In particular we can use
the scalar field to construct scale-invariant quantities from the non-scale invariant fields

h̄′a = h̄a/φ and S̄ ′a = S̄a/φ3 (4.113)

as long as φ is non-zero. The torsion is then given in terms of the torsion of h̄′a by

X̄̆ a = φX̄̆ ′
a − (D̆′φ)∧γa. (4.114)

Using these relations the modified structure equation, equation (4.98), becomes

X̄ ′
a + X ′∧γa = −κS

¯
′
a (4.115)

where κ = 1/α. If α = 1/8πG this is the structure equation of GTG. Similarly we can
recover Einstein’s equation by using the invariant variables

Ḡ′a = φ−2Ḡa and T̄ ′a = φ−4T̄ a (4.116)

in equation (4.95). We can set the dashed variables equal to the undashed variables by fixing
the scale gauge so that φ = 1, called the Einstein gauge since it reduces the h̄ equation
to Einstein’s equation. This is possible in the presence of stress-energy since φ must be
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non-zero and the Lagrangian is symmetric under φ → −φ. However a more general gauge
would be needed to discuss the possibility of φ = 0 and at the quantum level we anticipate
other gauges being more useful. With φ = 1 we see that the quartic φ term in the action
would give rise to a cosmological constant if Λ 6= 0 (see [47] for a discussion).

Using (4.101) and fixing φ = 1 in the K-equation (4.104) we have

ν2K + e
¯
(∂KLm) = −β2e

¯
(∇ ·G) deth

¯
(4.117)

= −β2[D · H − Sa ·(γa∧H)]. (4.118)

When the spin is a trivector (as for electroweak spinors) the spin Sa = S·γa where S = ψIγψ̃
and γ is a basis vector. In this case we can write

e
¯
(∂KLm) + ν2K = −β2(D·H − κS·H). (4.119)

Taking the divergence and making use of the relation [5]

D∧[h̄(Ar)] = h̄(∇∧Ar) + κ〈Sh̄(Ar)〉r+1 (4.120)

we get
ν2D·K +D·ē(∂KLm) = −β2(Ih̄(∇∧[ē(ID·H)])− κD·(S·H)). (4.121)

Now
ID·H = −h̄(∇∧[ē(IH)]) + κIS·H (4.122)

so that
Ih̄(∇∧[ē(ID·H)]) = κD·(S·H) (4.123)

and finally

ν2D·K = −D·[e
¯
(∂KLm)]. (4.124)

Since K can only enter the matter Lagrangian via derivatives of scalar fields we see that K
is divergenceless in the absence of other scalar fields. To see what sort of field K is we can
write equation (4.119) as

D2K −D(D·K)−KaR̄a − κ(D − κS)·(K·S) + m2K = 0 (4.125)

where m = ν/β. When Lm is independent of K and in the absence of torsion this is the
equation of a massive vector field of mass m:

D2K −KaR̄a + m2K = 0 (4.126)

Since K only couples to scalar fields directly it is essentially non-interacting and therefore
makes a potential dark matter candidate [38]. For spherically symmetric solutions for a
massive vector field and further references see [48].

The mass here differs from that found in Weyl’s geometry where the only gravitational
field in the action is the metric. This difference in masses is typical of the result obtained
when varying one rather than two fields in the action [49]. In GR this is equivalent to the



4.9. DISCUSSION 57

difference between the Palatini principle, where the connection is varied as an independent
field, versus variation with respect to the metric where the connection is predetermined. In
the gauge theory approach it is clear that Ω

¯a should be varied independently of h̄a. The
difference in predicted masses is probably trivial since the theory does not predict the value
of β (unless perhaps β = 1). However the difference is much more radical with a more
complicated (e.g. quadratic) Lagrangian as we shall see in the next chapter.

Fixing φ = 1 and using Einstein’s equation the φ equation (4.109) becomes

ν2D · K − ∂φLm|φ=1 − T Lm = 0. (4.127)

Substituting for D·K from (4.124) we have the equation

∂φLm|φ=1 + T Lm +D·[e
¯
(∂KLm)] = 0 (4.128)

that must be satisfied by any locally scale invariant matter Lagrangian. We note that the
trace of the stress-energy tensor is not zero, as expected for a realistic theory [47].

In summary, we have recovered GTG spin-torsion theory but with an additional massive
vector field that does not couple to spinors. This is very similar to conformal extensions of
GR. However the gauge theory Ω

¯a field is weight zero while the connection in GR contains
derivatives of the metric tensor and must be modified to contain Ks. This is the key differ-
ence between the gauge theory formulation and the introduction of local scale invariance in
GR via a new gauge field. It explains why we get different results from the field equations,
though it is not clear that there any observable differences. The gauge theory approach
would seem to be more consistent.

4.9 Discussion

Tsamis and Woodward [47] have shown that some scalar-metric theories of GR are identical
to their pure metric analogues. The theories they analysed were generated by forming scale
invariant combinations of the Ricci scalar and derivatives of the scalar field, and the action
is

S̄[φ, g, ψi] = S[φ2g, φ−nψi] (4.129)

where ψi are fields with weight n (we have defined weights to be the negative of what they
are usually defined to be). Similarly they show that the quantum theory in the Einstein
gauge is identical to the pure metric theory. They conclude that local scale invariance is a
sham symmetry without dynamical import.

In our approach much of their argument goes through. For instance relations (4.113)
show that φ is still really just a scale factor for the other fields. However since we have
to introduce a new gauge field there does seems to be some new physics. The bare the-
ory we end up with is identical to the non-scale invariant theory with the addition of a
minimally coupled massive vector field. The φ field is still without dynamical import, but
its kinetic term cannot be generated directly from the non-scale invariant Lagrangian by
substituting h̄a = φ−1h̄a as it could be in GR. We now have the K field which transforms
inhomogeneously so all we can say is that

S̄[φ, h̄a, Ω¯a, ψi,K] = S[φ−1h̄a, Ω¯a, φ
−nψi,K + φ−1∇φ], (4.130)
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which is easily proved by performing a scaling proportional to φ−1. Similar remarks of
course apply to theories in GR where a new gauge field is introduced.

If we had used the contraction of the torsion tensor to construct a scale invariant action
integral then the argument would have had full force and the theory would be equivalent
to a non-scale invariant theory with a torsion squared term in the action. Using a general
vector gauge field instead we have the possibility of a new physical field, as well being
consistent with the gauging arguments for the other symmetries.

In order to generate a more physically interesting theory it is possible to consider whether
φ might have some internal structure. A tempting possibility is identifying φ with the
modulus of the Higgs field. The standard model Lagrangian density can be written

L = 〈−DψIγ0ψ̃+DχIγ0χ̃− 1
4Fab·Fab + 1

2I·I+ν2(DaφH)†DaφH−2meψφH χ̃〉−V (4.131)

which is scale covariant if V is. (The details of our translation into geometric algebra are
not important here). To fit in with conformal gravity the electroweak Lagrangian must be
locally scale invariant. This means that the covariant derivatives must be replaced with the
scale covariant invariant ones and that V must be of weight four. There are two possibilities.
We could have

V = η(φ2
H − ν2

Hφ2)2 (4.132)

to recover the standard model when we use the Einstein gauge. Alternatively we could
identify the modulus of the Higgs field with φ in which case we must have V = Λφ4. In
this case there is no symmetry breaking; instead the symmetry remains unbroken and the
observed particle spectrum comes from working in the Einstein gauge. Of course observ-
ables must be gauge invariant so this provides an interesting alternative to the usual Higgs
mechanism. The main prediction is that the Higgs particle does not exist since there is now
one extra degree of freedom — the scale gauge freedom. The φ field can now be set exactly
to one. This also means that K does not couple to any standard model fields except via
gravity.

This Higgs free model has been developed before [41, 42]. If we do not adopt the Higgs
free model we gain some terms in the standard model from the coupling of K to the Higgs
field. This has the advantage of making the K field potentially detectable, and allows
standard model physics to remain otherwise unchanged (though we have not checked the
quantum implications).

4.10 Conclusions

We have reviewed the formulation of GTG within Geometric Algebra and shown how it
relates to formulations in terms of differential forms. The theories are essentially equivalent,
and in the absence of torsion GTG is locally equivalent to GR.

We then showed that it is possible to develop a locally scale invariant GTG. In the
absence of other scalar fields the theory is equivalent to adding a massive vector field to
the non-scale invariant theory. It is therefore consistent with observational tests of GR.
The only physical interest seems to come from considering the new field as a potential dark
matter candidate.
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With the addition of other scalar fields things may be more interesting. It is possible to
identify the φ field with the modulus of the Higgs field, giving the bold prediction that the
Higgs particle does not exist. There is a good possibility that this may be discounted shortly
by the discovery of a Higgs, in which case physical interest enters through the coupling of the
K field to the Higgs. This could potentially give a mechanism for generating dark-matter
Ks in the early universe. A cosmological constant terms also arises naturally. However the
theory makes no predictions for the magnitude of these terms.

The scale invariant formalism may also have mathematical uses. The possibility of not
using the Einstein gauge gives a different mathematical approach to essentially the same
physical problem. One could consider fixing the scale gauge by fixing K rather than φ,
which could have applications in constructing a quantum theory.





Chapter 5

Quadratic Lagrangians and
Topology

In this chapter we analyse some topological configurations of the spin connection field
in Poincaré Gauge Theory Gravity. There are two topological invariants that we show
arise from the scalar and pseudoscalar parts of a single integral. We explore the link with
Yang-Mills instantons in Euclidean gravity. Neither of the topological action integrals con-
tribute to the classical field equations and they therefore restrict the number of independent
quadratic terms we can have in the GTG Lagrangian. There are ten independent terms
quadratic in the Riemann tensor and the topological invariants reduce these to eight possi-
ble classically independent terms. The resulting field equations for the parity non-violating
terms are presented. The motivation for studying quadratic Lagrangians stems in part from
the analysis of scale invariant theories in the previous chapter, and we also expect quadratic
term to be essential to the formulation of a sensible quantum theory.

5.1 Introduction

It is possible to construct quadratic terms for the gravitational Lagrangian that are total
divergences. In the gauge theory approach to gravity these are topological invariants and
are given by boundary terms in the action integral. They do not affect the classical field
equations, though they could become important in a quantum theory. The invariants have
a natural analogue in Euclidean gravity as the winding numbers of Yang-Mills instantons.
These are characterized by two integers which can be expressed as integrals quadratic in
the Riemann tensor.

When quadratic terms are introduced into the GTG Lagrangian the theory differs
markedly from similar extensions in GR. In GR one obtains fourth order equations for
the metric [50], whereas in GTG one has a pair of lower order equations. One of these
determines the connection, which in general will differ from that used in GR even in the
absence of spin.

We construct the topological invariants for the GTG action integral. We show that the
two invariants are the scalar and pseudoscalar parts of a single quantity, and our derivation

61
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treats them in a unified way. The relationship with instanton solutions in Euclidean gravity
is explored. As for instantons in Yang-Mills theory the rotation gauge field becomes pure
gauge at infinity and the topological invariants are the corresponding winding numbers.

We construct irreducible fields from the Riemann tensor and use these to form ten inde-
pendent quadratic terms from the Riemann tensor. In an action integral the two topological
terms can be ignored, so only eight terms are needed. We construct the field equations for
the parity non-violating Lagrangian terms. Units with h̄ = c = 8πG = 1 are used through-
out this chapter.

5.2 Topological invariants

We are interested in the behaviour of quadratic terms in the gravitational Lagrangian in
GTG. We start by constructing the following quantity

Z ≡ γa∧γb∧γc∧γdR̄cdR̄ab = γa∧γb∧γc∧γd 1
2(R̄cdR̄ab + R̄abR̄cd). (5.1)

This only has scalar and pseudoscalar parts and can be written in terms of the non-covariant
field strength as

Z = h̄a∧h̄b∧h̄c∧h̄dR
¯ cdR¯ ab = deth γa∧γb∧γc∧γdR

¯ cdR¯ ab ≡ dethZ (5.2)

where
Z ≡ γa∧γb∧γc∧γdR

¯ cdR¯ ab. (5.3)

We can now form an invariant integral that is independent of the h̄a field as

S ≡
∫
|d4x|det h−1Z =

∫
|d4x|Z. (5.4)

From the definition of the Riemann tensor we find that

Z = γa∧γb∧γc∧γd(2∇cΩ¯d + Ω
¯ cΩ¯d)(2∇aΩ¯ b + Ω

¯aΩ¯ b)

= −4γa∧γb∧γc∧∇(∇cΩ¯aΩ¯ b + 1
3Ω
¯aΩ¯ bΩ¯ c)

= 2γa∧γb∧γc∧∇(R
¯ acΩ¯ b + 1

3Ω
¯aΩ¯ bΩ¯ c). (5.5)

The main step in this derivation is the observation that the totally antisymmetrized product
of 4 bivectors vanishes identically in 4-d. This proof that Z is a total divergence is con-
siderably simpler than that given in [51], where gamma matrices were introduced in order
to generate a similar ‘simple’ proof in the Riemann-Cartan formulation. Here we have also
treated the scalar and pseudoscalar parts in a single term, which halves the work.

Since the integral reduces to a boundary term it should only contribute a global topo-
logical term to an action integral, and should not contribute to the local field equations.
This is simple to check. There is no dependence on the h̄a field, so no contribution arises
when this field is varied. When the Ω

¯a field is varied one picks up terms proportional to

γa∧γb∧γc∧γdDdR¯ cb = 1
3γa∧γb∧γc∧γd(DdR¯ cb + DbR¯ dc + DcR¯ bd) = 0, (5.6)
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which vanishes from the definition of the field strength and the Jacobi identity. Since the
two topological terms do not contribute to the field equations, and can therefore be ignored
in any classical action integral, it is useful to have expressions for them in terms of simpler
combinations of the Riemann tensor and its contractions. For the scalar term we find that

〈Z〉 = γa∧γb∧γc∧γd R̄cd∧R̄ab

= (γa∧γb∧γc)·[(γd ·R̄cd)∧R̄ab + R̄cd∧(γd ·R̄ab)]

= (γa∧γb)·[−RR̄ab + 2R̄c∧(γc ·R̄ab) + R̄cd(γ
c∧γd)·R̄ab)]

= R2 + 2γa ·[γb ·R̄c γc ·R̄ab − γb ·(γc ·R̄ab)R̄c] + 2R̄ba ·R̄ab

= 2R̄ba ·R̄ab − 4Ra ·R̄a +R2, (5.7)

where the adjoint functions are defined by

(γa∧γb)·R̄cd ≡ (γc∧γd)·R̄ab γa ·R̄b = γb ·R̄a. (5.8)

For the pseudoscalar term (denoted 〈Z〉4) we similarly obtain

〈Z〉4 = γa∧γb∧γc∧γd R̄cd ·R̄ab

= γa∧γb∧(R̄cd (γc∧γd)·R̄ab)

= −I(γc∧γd)·R̄ab (Iγa∧γb)·R̄cd

= 2IR̄∗cd ·R̄cd (5.9)

where we have introduced the dual of the Riemann tensor defined by

R̄∗ab ≡ 1
2Iγa∧γb∧γd∧γcR̄cd. (5.10)

We therefore have

S =
∫
|d4x| deth−1

(
2R̄ba ·R̄ab − 4R̄a ·R̄a +R2 + 2IR̄∗ab ·R̄ba

)
. (5.11)

This generalizes the usual GR expressions for the topological invariants to the case where
the Riemann tensor need not be symmetric, as in the case when there is torsion. Both of
the scalar and pseudoscalar contributions can usually be ignored in the action integral. The
standard GR expressions are recovered by setting R̄ab = R̄ab and R̄a = R̄a.

5.3 Relation to instantons

The derivation of topological terms in GTG has a Euclidean analogue, which gives rise
to instanton winding numbers as found in Yang-Mills theory. For this section we assume
that we are working in a Euclidean space. Most of the formulae go through unchanged,
except that now the pseudoscalar squares to +1. For this section we therefore denote the
pseudoscalar by E. The proof that the integral (5.4) is a total divergence is unaffected, and
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so it can be converted to a surface integral. The Riemann is assumed to fall off sufficiently
quickly that we can drop the Rac term, so

S = −2
3

∫
|d3x|n∧γa∧γb∧γc Ω

¯aΩ¯ bΩ¯ c. (5.12)

For the Riemann to tend to zero the Ω
¯a field must tend to pure gauge,

Ω
¯a = −2∇aLL̃, (5.13)

where L is a (Euclidean) rotor. The integral is invariant under continuous transformations
of the rotor L, so we define the winding numbers

χ + Eτ ≡ 1
6π2

∫
|d3x|n∧γa∧γb∧γc∇aLL̃∇bLL̃∇cLL̃ =

1
32π2

S. (5.14)

The numbers τ and χ are instanton numbers for the solution, here given by the scalar and
pseudoscalar parts of one equation. The common origin of the invariants is clear, as is the
fact that one is a scalar and one a pseudoscalar. There are two integer invariants because
the 4-d Euclidean rotor group is Spin(4) and the homotopy groups obey

π3(Spin(4)) = π3(SU(2)×SU(2)) = π3(SU(2))×π3(SU(2)) = Z×Z. (5.15)

We can see this explicitly in GA, here the ESTA (Euclidean spacetime algebra), where

γ2
µ = −1 σ2

k = (Eσk)2 = −1 E2 = 1. (5.16)

That the 4D rotor group is SU(2)×SU(2) is closely related to the existence of an ideal
structure for the bivectors. We can decompose a bivector F as

F = F1 + F2 = 1
2(1 + E)A + 1

2(1− E)B. (5.17)

This splits F into the sum of two commuting mutually annihilating bivectors F1 and F2. A
general rotor L can therefore be split into the product of two commuting rotors

L = eF = eF1eF2 . (5.18)

Now
e

1
2 (1±E)v = 1

2(1± E)ev + 1
2(1∓ E) (5.19)

so
eF = 1

2(1 + E)eEA − 1
2(1−E)eEB. (5.20)

Substituting for L in (5.14) we find that the integral splits into the sum of two ideals

1
2(χ + Eτ) = 1

2(1 + E)pa + 1
2(1− E)pb (5.21)

where pa and pb are the winding numbers for the rotors eEA and eEB:

pv =
E

12π2

∫
|d3x|n∧γa∧γb∧γc∇ae

Eve−Ev∇be
Eve−Ev∇ce

Eve−Ev (5.22)
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The maps are clearly S3 → S3, so we have the expected structure.
We can if we wish decompose the Euclidean rotation gauge function into the sum of two

SU(2) gauge functions
Ω
¯a = 1

2(1 + E)A
¯ a + 1

2(1− E)B
¯ a (5.23)

and come to the same conclusion.
The use of the ideal structure here is essentially the same as the complexification trick

used to create commuting generators for the Lorentz group (see [52] and [53]). It is all a
case of changing the structure from R3×S3 (non-compact) to S3×S3 (compact).

5.4 Topological terms for the h̄-field

We have found combinations of terms in the Riemann tensor that contribute a divergence
to an action integral and therefore do not affect the local physics. Can we find similar terms
involving the torsion tensor X̄ a? The answer is yes [54], some work shows that

X̄ a∧X̄ a − R̄ab∧γa∧γb = deth∇∧[ēa∧X
¯ a] (5.24)

where X
¯ a = ē(X̄ a) = D∧ ēa is the non-covariant torsion tensor. However, unlike the two

quadratic Riemann terms, the quadratic torsion term is not scale invariant.

5.5 Quadratic Lagrangians

We now use the preceding results to construct a set of independent Lagrangian terms for
GTG which are quadratic in the Riemann tensor R̄ab. The field equations that result will
be very different to those obtained from quadratic GTG since in the gauge theory approach
we consider Ω

¯a as an independent field. We do not include quadratic terms in the torsion,
largely because this work was motivated by the development of a scale invariant theory, and
the quadratic torsion terms are not scale invariant.

To construct the independent terms for a quadratic Lagrangian we need to construct
the irreducible parts of the Riemann tensor. To do this we write

R̄ab = W̄ab + P̄ab + Q̄ab (5.25)

where
γaW̄ab = 0 γaP̄ab = γa∧P̄ab γa ·Q̄ab = R̄b. (5.26)

In the language of Clifford analysis, this is a form of monogenic decomposition of R̄ab [52, 55].
To achieve this decomposition we start by defining [5]

Q̄ab = R̄[a∧γb] − 1
6γa∧γbR, (5.27)

which satisfies γa ·Q̄ab = R̄b. We next take the protraction of (5.25) with γa to obtain

γa∧R̄ab − 1
2γa∧R̄a∧γb = γa∧P̄ab. (5.28)
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We now define the vector valued function

V̄b ≡ −Iγa∧R̄ab = γa ·(IR̄ab). (5.29)

The symmetric part of V̄b is

V̄+
b = 1

2(V̄b + γa V̄a ·γb)
= −I 1

2(γa∧R̄ab + γa γb∧γc∧R̄ca)
= −I(γa∧R̄ab − 1

2γa∧R̄a∧γb) (5.30)

so we have
γa∧P̄ab = IV̄+

b . (5.31)

It follows that
P̄ab = −IV̄+

[a∧γb] + 1
6Iγa∧γbV (5.32)

where
V = γa ·V̄a. (5.33)

This construction of P̄ab ensures that the tensor has zero contraction, as required.
Splitting the Ricci tensor into symmetric and antisymmetric parts we can finally write

the Riemann tensor as

R̄ab =W̄ab + R̄+
[a∧γb] − 1

6γa∧γbR+ R̄−[a∧γb] − IV̄+
[a∧γb] + 1

6Iγa∧γbV (5.34)

where + and − superscripts denote the symmetric and antisymmetric parts of a tensor
respectively. This decomposition splits the Riemann tensor into a Weyl term (W̄ab) with 10
degrees of freedom, two symmetric tensors (R̄+

a and V̄+
a ) with 10 degrees of freedom each,

and an anti-symmetric tensor (R̄−a ) with 6 degrees of freedom. These account for all 36
degrees of freedom in R̄ab. The first three terms in the decomposition are the usual ones for
a symmetric Riemann tensor and would be present in GR. The remaining terms come from
the antisymmetric parts of R̄ab and only arise in the presence of spin or quadratic terms in
the Lagrangian. It is now a simple task to construct traceless tensors from V̄+

a and R̄+
a to

complete the decomposition into irreducible parts.
We can write the antisymmetric part of R̄a as

R̄−a = γa ·A (5.35)

where A = 1
2γa∧R̄a is a bivector. Using this definition we can write down 10 independent

scalar terms which are quadratic in the Riemann tensor:

{ W̄ab ·W̄ab, W̄ab ·(IW̄ab), R̄+a ·R̄+
a , R2,

A·A, A·(IA), V̄+a ·V̄+
a , V̄+a ·R̄+

a , V2, RV } (5.36)

Six of these are invariant under parity and four are parity violating. The two topological
invariants can be used to remove two terms, so there are only eight possible independent
quadratic terms for the gravitational Lagrangian. The classical field equations arising from
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an equivalent set of terms, in addition to the possible torsion squared terms, are calculated
in [56]. We shall briefly give the non-parity violating field equations here.

For calculational purposes it is easier to use the six parity invariant terms

{ R̄ab ·R̄ba, R̄a ·R̄a, R̄a ·R̄a, R2, V̄a ·V̄a, V2 } (5.37)

and the four parity violating terms

{ R̄ab ·(IR̄ba), R̄a ·V̄a, R̄a ·V̄a, RV } (5.38)

which are linear combinations of the irreducible components. For example the Weyl squared
term is given by

W̄ab ·W̄ba = R̄ab ·R̄ba − 1
2R̄a ·R̄a − 1

2R̄a ·R̄a + V̄a ·V̄a + 1
6(R2 + V2). (5.39)

The topological invariants can be used to remove one term from each set. If we consider
just the parity invariant terms and use the topological invariant to remove R̄a ·R̄a we can
calculate the field equations from

LR2 = 1
4ε1R2 + 1

2ε2R̄a ·R̄a + 1
4ε3R̄ab ·R̄ba + ε4

1
4V2 + ε5

1
2 V̄a ·V̄a (5.40)

The field equations for the ha give a modified Einstein tensor of the form

Ḡ′a = Ḡa + ε1Ḡ1a + ε2Ḡ2a + ε3Ḡ3a + ε4Ḡ4a + ε5Ḡ5a (5.41)

where

Ḡ1a = R(R̄a − 1
4γaR) (5.42)

Ḡ2a = γb R̄b ·R̄a + R̄ab ·R̄b − 1
2γa R̄b ·R̄b (5.43)

Ḡ3a = γb R̄bc ·R̄ca − 1
4γa R̄bc ·R̄cb (5.44)

Ḡ4a = V(V̄a − 1
4γaV) (5.45)

Ḡ5a = γb V̄b ·V̄a + (IR̄ab)·V̄b − 1
2γa V̄b ·V̄b. (5.46)

These tensors all have zero contraction, as expected from scale invariance.
The field equations for Ω

¯a give the generalized structure equation of the form

N̄ a = S̄a (5.47)

where S̄a is the covariant matter spin tensor. The contributions to N̄ a from the five terms
in the action integral are then given by

N̄ 1a = R γb ·(γa∧X̄ b) + γa∧DR (5.48)

N̄ 2a =
(
(γc∧γb)·(γa∧X̄ c)

)∧R̄b + γa∧(DbR̄b)−D∧R̄a (5.49)

N̄ 3a = DbR̄ab −X bR̄ab + 1
2R̄bcX bc

a (5.50)

IN̄ 4a = V γb ·(γa∧X̄ b) + γa∧DV (5.51)

IN̄ 5a =
(
(γc∧γb)·(γa∧X̄ c)

)∧V̄b + γa∧(DbV̄b)− D∧V̄a (5.52)
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where X b = γb·X = γb·(γa·X̄ a). Each of these terms is locally scale covariant, as they must
be coming from a scale invariant Lagrangian. As for the Dirac Lagrangian the local scale
covariance is maintained by the torsion tensor — X enters in just the right way to form
scale covariant combinations with the covariant derivatives.

Either these terms have to be significant only at high energy, or they have to be consistent
with GR. For a vacuum solution of GR we have R̄ab = R̄ab, γaR̄ab = 0 and R̄a = 0. It
follows that in this case all the quadratic terms in the action are zero or a total divergence
(The R̄ab·R̄ba term is a divergence from (5.11)). Vacuum solution to GR are therefore also
solutions to a theory with quadratic curvature terms. The quadratic terms will also be
small when the curvature is small.

With a Ricci plus Weyl squared Lagrangian the modified structure equation is auto-
matically satisfied in the absence of torsion and spin. Isotropic cosmological solutions of
GR (which have zero Weyl tensor) will therefore also be solutions of this theory. Actions
involving terms quadratic in the torsion will also trivially be solved by any torsion-free
solutions to GR, however as previously noted these are not scale invariant. For a variety of
more general results on the correspondence with GR see [56].

5.6 Conclusions

We have shown that in gauge theory gravity topological terms are simply dealt with and
reduce to boundary integrals which do not alter the classical field equations. In the gauge
theory approach these topological terms are the winding numbers for instanton solutions in
Euclidean gravity. We constructed ten possible terms for a quadratic Lagrangian, which the
topological invariants then restrict to eight independent terms, and derived the field equa-
tions. These terms may make important contributions to the high-energy gravity theory,
with or without the motivation of being valid contributions to a scale invariant action.



Chapter 6

Perturbations in Cosmology

In this chapter we briefly review our current understanding of the history of the universe
and then move on to consider covariant methods for analysing cosmological perturbations
within that framework.

We start by briefly describing the relevant features of the big bang model, covering the
early inflationary period through to the universe we observe today. The general model is
well established and is consistent with current observations (for a general introduction see
see [57, 58]; for an alternative viewpoint see [46]). On large scales the universe appears to be
approximately homogeneous and isotropic. Solutions to General Relativity for an exactly
homogeneous and isotropic matter distribution form an exact family of theoretical models,
the Friedmann-Robertson-Walker (FRW) universes. In reality the universe is not exactly
FRW and so we move on to discuss perturbations about an exact FRW universe. These
perturbations leave their imprint on the Cosmic Microwave Background (CMB) radiation
and ultimately evolve to form the structure that we observe today.

In the spirit of this thesis we employ covariant methods to study the perturbations, so
ensuring that the quantities we discuss are directly observable and there are no ambiguities
inherited from the gauge freedom in the underlying gravitational theory. The main drawback
to the covariant approach is that it hides the correspondence with the gauge fields and so
complicates any quantum considerations. We shall not attempt to surmount this difficulty
here.

The presentation draws heavily on references [6–10] and other discussions can be found
in [59–61]. Non-covariant techniques are well known and are described in many places,
e.g. [12, 14]. Ultimately the linearized equations that we arrive at are equivalent to the
equations derived by non-covariant techniques.

Much of this chapter is a review of previous work. The main innovations are in the
derivation of the scalar-field inflation equations, the energy integrated multipole equations,
and the equations governing the evolution of massive neutrino perturbations. These are in-
novations of presentation only, not in content (which is well known). The energy-integrated
equations have previously been used to study small velocity dispersion of cold dark matter
perturbations [62]. Here we derive the general equations which can be applied to all species
of matter present and discuss how they can be used to study massive neutrino perturba-
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tions. The material in this chapter forms the theoretical basis for much of the numerical
implementation we shall discuss in the next chapter.

6.1 Introduction: Evolution of the Universe

Evidence from the redshift of objects observed by astronomers, and a body of other evidence,
lead us to believe that the universe is currently expanding. Assuming that the universe
has been expanding for all of its history we conclude that it must have started very small.
Observations on the largest scales also lead us to conclude that the universe it approximately
homogeneous and isotropic. Solutions to General Relativity for a homogeneous and isotropic
medium are consistent with the apparent expansion and define the exact FRW universe
models.

If we define the scale factor of the universe S, equal to one today, volumes in the past
scale with S3. Matter densities are therefore proportional to S−3. Radiation is redshifted
by the expansion and has energy proportional to S−1, so the radiation energy density varies
as S−4. The radiation energy density today is very low, as witnessed by the approximately
uniform microwave background temperature of 2.7K, so the evolution is matter dominated.
However if we go back far enough the radiation density will come to dominate, and we enter
the radiation dominated era.

At the moment the universe is only slightly ionized and is therefore transparent on large
scales. However at approximately the same scale factor at which the universe becomes
radiation dominated the photons have enough energy to ionize the hydrogen and helium
that make up the bulk of the baryonic mass of the universe. This is called recombination
(a misnomer). Before recombination there was a high free electron density and the universe
was opaque. The CMB we observe in the sky today is therefore a snapshot of the time of
recombination when the universe first became transparent. The surface we see in the CMB
is called the last scattering surface, a spherical shell of the universe in its early stages of
evolution.

As we go back in time before recombination the age of the universe becomes so short
that the distance light could have travelled becomes very short. At some point in the
past all perturbations at astronomically relevant scales today would have been out of causal
contact. This provides the ‘Horizon Problem’— we observe correlations on scales that could
not have been in causal contact at the beginning an FRW universe containing only normal
matter. The currently favoured solution to this is an inflationary scenario in which there
was a early period of exponential expansion. Scales we observe today would then once
again be in causal contact at the early stage of inflation and the horizon problem goes away.
Approximately exponential expansion can be obtained by postulating a scalar ‘inflaton’
field that dominated the very early universe.

Inflation also provides a framework in which perturbations can be generated by quan-
tum (or thermal) fluctuations during the exponential expansion. These get rapidly pushed
outside the Hubble radius (the radius of causal contact) by the expansion, and only re-
enter the horizon again at some point during the radiation or matter dominated eras. Once
perturbations are outside the horizon they cannot be greatly affected by local physics, and
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we expect the perturbations re-entering the horizon to have approximately the same form
as when they left it. This allows us to make concrete predictions for the early radiation
dominated era ignoring all the unknown complications of reheating (the generation of the
matter in the universe today at the end of inflation).

There are three families of FRW universes corresponding to their spatial curvatures
(which are determined by the total energy density and expansion rate). In a ‘flat’ universe
the 3-space is Euclidean so light rays travel in straight lines. In ‘open’ and ‘closed’ universes
light rays diverge or converge respectively. Whether the curvature will be important de-
pends on whether there has been sufficient time for deviations from flatness to be observed,
corresponding to the relative sizes of the Hubble radius and curvature radius. Evidence
suggests that the universe is nearly flat today, so in the early universe the curvature would
have been insignificant. However the angular size at which we see scales on the last scat-
tering surface will depend on the curvature. For example in a closed model the light rays
will have converged, so a given angle on the sky today corresponds to a smaller size on the
last scattering surface than in open or flat models. The curvature must therefore be taken
into account when discussing the late evolution. The observed angular sizes of scales in the
CMB provide a good way to measure the curvature.

In the radiation and matter dominated eras perturbations on scales larger than the
Hubble radius can be viewed as little mini-universes with a larger or smaller energy density
than the background. An over-dense region therefore evolves as a more closed universe and
an under-dense region as a more open universe. Closed universes expand less fast than
flat ones, so as they evolve an over-dense region will become even more over-dense relative
to the background, and so the over-density increases. Similarly under-dense regions grow
faster than the background becoming more under-dense. Thus perturbations on super-
Hubble scales grow as the universe evolves. When the perturbation enters the horizon it
can undergo gravitational collapse. The perturbation collapses until the pressure dominates,
and then a series of oscillations result during which the perturbation amplitude can no longer
grow due to the pressure support. The oscillations are damped by photons diffusing from
hot to cold regions, and small scale perturbations can be virtually wiped out over time.
What we see on the last scattering surface at a particular angular size will depend on the
stage of evolution of the corresponding perturbation scale at the time of recombination.

Observations of the CMB show that it is not exactly uniform at 2.7K but that there are
anisotropies at the 10−5 level. These resulted from perturbations in the baryonic matter
and radiation on the last scattering surface. The smallness of the CMB anisotropy is very
helpful as it implies that a linearized treatment, which greatly simplifies the analysis, will
be highly accurate at least until last scattering.

Perturbations in the total matter of order 10−5 are not sufficient to explain all the small
scale structure we observe today. This can be solved by the introduction of a cold dark mat-
ter (CDM) component. CDM is any matter with negligible velocity dispersion that does not
couple to the baryons or photons and therefore evolves purely under the influence of gravity.
While the baryonic perturbations are prevented from growing due to pressure support (and
decay due to damping) the CDM perturbations can continue to grow. At recombination
we see an anisotropy in the CMB due to a small baryonic/photon perturbation. However
after recombination atoms have formed, the baryons are no longer tightly coupled to the
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photons, and so the photon pressure is unimportant. The baryons can then fall into the
potential wells of the CDM perturbations. Thus the ultimate total matter perturbation af-
ter last scattering can be considerably greater than the anisotropy we observe in the CMB,
allowing the 10−5 figure to be consistent with structures evolved from larger total matter
perturbations. Dark matter can also provide an explanation for other astronomical obser-
vations such as the shape of galaxy rotation curves, though recent evidence is beginning to
suggest that CDM may not be sufficient to explain all the observations. The situtation may
be helped by the introduction of hot mark matter (massive neutrinos), warm dark matter
or interacting dark matter components [63–65], or even by using a different gravitational
theory [66].

General Relativity admits a cosmological constant, Λ, corresponding to a uniform en-
ergy density with isotropic negative pressure. As Λ is a constant it will be dominated by
the radiation and matter density in the early universe if it is to have values consistent with
observations today. Current evidence suggests that the expansion of the universe is acceler-
ating and therefore that we have just entered the Λ-dominated era. In the Λ-dominated era
the acceleration due to the negative pressure overcomes the deceleration we expect from the
gravitational attraction of the matter and radiation. One can also devise theories in which
the acceleration is explained by a ‘quintessence’, where the negative pressure comes from a
scalar field background that is evolving with time. We do not discuss quintessence models
here, but do (trivially) allow for a cosmological constant via a homogeneous stress-energy
component with ρ = −p.

During inflation the universe is also accelerating. However since we know inflation has
to come to an end it is most readily explained by the presence of a slowly evolving scalar
field rather than a strictly constant Λ term.

The spatial curvature is commonly measured by Ωtot which is the ratio of the total
energy density today to that required for a flat universe. If the universe never enters a
phase in which it is Λ-dominated the curvature also determines the fate of the universe—
closed models Ωtot > 1 will recollapse to a ‘big crunch’ and open models (Ωtot < 1) will go
on expanding for ever. Once the universe enters a Λ-dominated phase it will accelerate for
ever regardless of the spatial curvature.

We now discuss in detail the propagation of classical linear perturbations and apply the
equations to perturbations during inflation. We demonstrate exactly which quantity we
expect to be preserved for super-Hubble modes over the reheating epoch. We then consider
the era after reheating from the early radiation dominated era, when all relevant scales
are still outside the horizon, until the present day. The main goal of this is to be able to
calculate the power spectrum for CMB anisotropies observed on the sky today in terms of
the super-Hubble perturbations present in the early radiation dominated era. Since inflation
is rather speculative we allow for an arbitrary initial power spectrum rather than fixing it to
the predictions from a particular inflationary model. With the numerical implementation in
the next chapter we should ultimately be able to use forthcoming observations to constrain
the initial power spectrum and hence the inflationary theory.
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6.2 Covariant perturbations: The 3+1 decomposition

We can perform a space-time split of physical quantities with respect to a four velocity
u, where it is convenient to choose u2 = 1. The component quantities are then in prin-
ciple observable by observers moving with velocity u. In an exact FRW universe we can
unambiguously choose u to be the velocity of fundamental observers (observers comoving
with the matter). However in a perturbed universe there is freedom to choose u in many
ways such that it reduces to the velocity of a fundamental observer in the FRW limit. It is
often convenient to choose u such that particular quantities vanish, maybe the total energy
flux (the energy frame), the shear (the Newtonian gauge) or the CDM velocity (the CDM
frame). For the moment we shall leave u unspecified.

The divergence of the velocity, the expansion scalar θ ≡ D·u, will be a constant in the
3-volume orthogonal to u in an isotropic universe. If we consider the evolution of a 3-volume
along the lines of u we can use the divergence theorem and u2 = 1 to write

∫
dV4D·u =

∫
dt V3θ = ∆V3 (6.1)

and hence

θ =
1
V

dV3

dt
= 3

Ṡ

S
. (6.2)

Here S is the scale factor so that V3 ∝ S3, an over-dot denotes the time derivative u ·D,
and we can choose to normalise so that S = 1 today. The Hubble parameter is often used
to discuss the expansion rate and is defined as Ṡ/S = θ/3.

It is useful to define a projection operator to project quantities orthogonal to u

H
¯

(a) = a− u·au. (6.3)

We also define the scalar
hab ≡ γa ·H¯ b = hba (6.4)

and then H
¯ au

a = 0 and ha
bH¯ a = H

¯ b as required for a projection orthogonal to u. (In this
chapter we concentrate on covariant methods and do not use the hab = γa ·h¯b function so
no confusion should arise).

We can write a general covariant tensor Vab = γa·V̄b in terms of irreducible components

Vab = V〈ab〉 + V[ab] + 2ucVc(aub) + ucudVcduaub − 1
3hcdVcdhab. (6.5)

The angled brackets denote the projected symmetric trace free (PSTF) part, square brack-
ets antisymmetrization and round brackets symmetrization. The antisymmetric part cor-
responds to a bivector that can be further split into one even and one odd parity spin-1
fields.

In using the 3+1 decomposition we often equate irreducible parts on both sides on an
equation. The product of two irreducible tensors is not in general irreducible, the PSTF
part of the product of a PSTF tensor Fa1...al

and a projected vector Ja is given by

J〈aFa1...al〉 = J(aFa1...al) − l
2l+1JbFb(a1...al−1

hala) (6.6)
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which can be verified by showing that the contraction on any pair of indices is zero. This is
useful for analysing the PSTF parts of an equation and for building up higher rank PSTF
tensors from lower rank ones.

The stress-energy tensor appears in Einstein’s equation and is therefore of fundamental
importance. We assume that it is symmetric (no spin) so that it can be decomposed as

Tab = πab + 2q(aub) + ρuaub − phab (6.7)

where πab is PSTF and represents the anisotropic stress, q is the vector heat flux, p is the
isotropic pressure and ρ is the energy density.

We also need to take derivatives in the 3-space orthogonal to u. For a tensor V̄b we
define the projected derivative

D̂aV̄b = hc
ah

d
bH¯

(DcV̄d) (6.8)

or equivalently
D̂aVbc = hd

ah
e
bh

f
cDdVef (6.9)

The other important quantity is the covariant derivative of u, which is decomposed as

Daub = σab + $ab + 1
3θhab + uaAb (6.10)

where σab = σ〈ab〉 is the PSTF shear tensor, θ = D·u is the expansion scalar, A = u·Du is
the acceleration and $ab = D̂[aub] can be written in terms of the vorticity bivector

$ab = 1
2(γb∧γa)·$. (6.11)

All the components of the derivative are orthogonal to u because u2 = 1. The antisymmetric
part of uaAb cancels with the vorticity to leave the antisymmetric part of the derivative

D∧u = $ −A∧u. (6.12)

From the definition the vorticity obeys the constraint equation

D̂∧$ + A∧$ = 0. (6.13)

In an exact FRW universe all projected non-isotropic quantities vanish otherwise they
could be used to define a direction in contradiction with the assumed isotropy. The only
non-zero parts of the stress-energy tensor are therefore the energy density and isotropic
pressure. Likewise the expansion scalar completely determines the derivative of u. All the
other terms are therefore covariant first order quantities which vanish in an exact FRW
model. Other quantities that do not vanish necessarily in an exact FRW universe are the
spatial curvature and the scale factor S (in a perturbed universe defined by 3Ṡ/S = θ).
However we can take the spatial gradient of any zero order scalar to define projected vectors
that will be first order about an FRW model. We therefore quantify the perturbations about
the exact zero-order FRW values with the variables

Za ≡ SD̂aθ ha ≡ D̂aS Xa ≡ SD̂aρ X p
a ≡ SD̂ap (6.14)
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and
ηa ≡ 1

2SD̂a
(3)R. (6.15)

To relate the time derivatives of these derived first order quantities to the time derivatives
of the zero order quantities we can use the result for a scalar φ that

(D̂aφ)̇ = D̂aφ̇− D̂aubD̂bφ−Aaφ̇− uaA·D̂φ. (6.16)

To first order the ua component vanishes and the time derivative is also projected.
This completes the set of variables useful for covariantly describing the evolution of

perturbations about an FRW model. All the first order quantities are useful but they are
not all independent, for example

ḣa = 1
3(Za − SθAa). (6.17)

Using the decomposition of the stress-energy tensor the equation for conservation of
stress-energy D·T̄ a = 0 implies the energy conservation equation

ρ̇ + (ρ + p)θ + D̂·q = 0 (6.18)

and the momentum conservation equation

q̇a + 4
3θqa + (ρ + p)Aa − D̂ap + D̂·π

¯a = 0. (6.19)

The first order propagation equation for the density perturbation Xa follows from taking
the spatial gradient of (6.18) and commuting derivatives using (6.16) giving

Ẋa + 3ḣa(ρ + p) + (Xa + X p
a )θ + SD̂aD̂·q = 0. (6.20)

The remaining physics governing the evolution of perturbations is given by Einstein’s equa-
tion and the Bianchi identity, which we consider next.

6.3 General Relativity

To make progress we need to relate the variables in the stress-energy tensor to those in the
derivative of u using Einstein’s equation

R̄a − 1
2γaR = κT̄ a. (6.21)

We decompose the Riemann tensor as

R̄ab = W̄ab + R̄[a∧γb] − 1
6γa∧γbR (6.22)

where W̄ab is the Weyl tensor which is symmetric and traceless. Einstein’s equation then
allows us to replace all the terms except the Weyl tensor with terms from the stress-energy
tensor:

R̄ab = W̄ab + κT̄ [a∧γb] − κ1
3γa∧γbT (6.23)
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where the trace of the stress-energy tensor is T = ρ− 3p. To relate this to the terms in the
decomposition of the derivative of u we use the Ricci equation

[Da,Db]u = R̄ab ·u. (6.24)

To simplify matters we now only keep terms which are first order about an FRW universe.
Exactly the same method can be used to obtain the exact equations in a straightforward
way [6], but here we only require the linearized equations since observations tell us that the
CMB anisotropies are small. Using the Ricci equation contracted with ub we have

ubu·R̄ab = 1
3(θ̇ + 1

3θ2)H
¯ a + 1

3θγa ·$ + 1
2γa ·$̇ + σ̇

¯a + 2
3θσ

¯a − D̂aA. (6.25)

Note that to first order time derivatives of projected first order quantities (like σ
¯a) are also

projected since
u·σ̇

¯a = −u̇·σ
¯a = −A·σ

¯a = 0 (6.26)

to first order.
The quantity ubW̄abu can be split into vector and trivector parts

ubW̄abu ≡ Ēa + IB̄a. (6.27)

defining the “electric” and “magnetic” parts of the Weyl tensor. The PSTF nature of these
follows from the symmetry properties of the Weyl tensor and they are first order since they
are projected vectors. Using the decomposition of the Riemann tensor we therefore have

ubu·R̄ab = −Ēa − 1
2κπ

¯a − 1
6κH

¯ a(ρ + 3p). (6.28)

Equating the two expressions for ubR̄ab ·u we have

1
3(θ̇ + 1

3θ2)H
¯ a + 1

3θγa ·$ + 1
2γa ·$̇ + σ̇

¯a +
2
3
θσ
¯a − D̂aA

= −Ēa − 1
2κπ

¯a −
1
6
κH

¯ a(ρ + 3p). (6.29)

We now equate the irreducible parts on both sides of the equation. Taking the trace gives
the linearized Raychaudhuri equation

θ̇ + 1
3θ2 − D̂·A = −1

2κ(ρ + 3p). (6.30)

The antisymmetric part gives a propagation equation for the vorticity

$̇ + 2
3θ$ − D̂∧A = 0 (6.31)

and the PSTF part gives a propagation equation for the shear

σ̇ab + 2
3θσab − D̂〈aAb〉 + Eab + 1

2κπab = 0. (6.32)

Taking the trace of the Ricci equation to give −u ·Rau
a and using the Einstein equation

leads to the constraint equation

κqa = D̂b$ab + D̂·σ
¯a − 2

3D̂aθ. (6.33)
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Decomposing the dual of the Riemann tensor and using Einstein’s equation gives

ubR̄∗ab ·u = −B̄a + 1
2κIγa∧u∧q. (6.34)

Applying the Ricci equation to the left hand side and taking the PSTF part yields the
constraint equation

Bab = curlσab − 1
2D̂〈a$∗

b〉 (6.35)

where the curl of a tensor is defined by

curlσab ≡ Iγ(a∧u∧D̂∧σ
¯b) = εcd(aD̂cσb)

d (6.36)

and the vorticity vector $∗ is

$∗
a ≡ Iγa∧u∧$ = curlua. (6.37)

The curl of a PSTF tensor is also PSTF.
Further relations can be obtained from the Bianchi identity

D∧R̄ab = 0. (6.38)

Decomposing the Riemann tensor, using Einstein’s equation and the symmetries of the Weyl
tensor this becomes

D·W̄ab = κD[aT̄ b] − 1
6κDT ·(γa∧γb). (6.39)

Contracting with ub and using the energy conservation equations gives a somewhat lengthy
expression for the right hand side. For the left hand side we use

ubD·W̄ab = D̂·Ēau− Ė̄a − θĒa − Iu∧D̂∧B̄a (6.40)

which follows from writing
ubW̄ab = (Ēa + IB̄a)u. (6.41)

Projecting the resulting equation parallel to u gives the constraint equation

D̂·Ēa = 1
2κ(D̂·π

¯a + 2
3θqa + 2

3D̂aρ) (6.42)

and the PSTF part gives a propagation equation for Ēa:

Ėab + θEab − curlBab = 1
2κ(π̇ab + 1

3θπab − [ρ + p]σab − D̂〈aqb〉). (6.43)

To obtain similar equations for B̄a consider the dual of the Weyl tensor W̄∗
ab (which is equal

to ∗W̄ab from the symmetry of the Weyl tensor). The Bianchi identity implies

ubD·W̄∗
ab = −Iu∧D̂∧Ēa − uD̂·B̄a + B̄̇a + θB̄a. (6.44)

and the decomposition of the Riemann tensor gives

ubD·W̄∗
ab = 1

2κγa∧u∧γc∧DT̄ c + 1
6κI(DT )∧γa∧u. (6.45)



78 CHAPTER 6. PERTURBATIONS IN COSMOLOGY

Expanding the stress-energy tensor and equating terms gives two new equations. The
projection parallel to u gives the constraint equation

D̂·B̄a = 1
2κ( curl qa + [ρ + p]$∗

a) (6.46)

and the PSTF part gives the propagation equation

Ḃab + θBab + curl Eab = −1
2κ curlπab. (6.47)

It is useful to note that Ēa and B̄a are independent of frame to first order—changing
frame to u′ = u+v where v is first order only gives second order changes to the decomposition
of the Weyl tensor. Frames that reduce to that of fundamental observers in the FRW limit
will be always be related by first order quantities, so the components of the Weyl tensor are
the same in any frames that we shall consider. Since πab is frame invariant to first order it
follows from (6.43) that the quantity

(ρ + p)σab + D̂〈aqb〉 (6.48)

is also frame independent, which is readily checked. These frame independent quantities
are the covariant equivalent of the gauge invariant variables (up to linear combinations)
frequently used in other texts (see [11] for a good review).

6.4 The spatial curvature

The spatial 3-curvature is defined by the commutator of the projected derivatives. Acting
on a projected vector v for example we have

[D̂a, D̂b]v = −(3)R̄ab ·v (6.49)

(the sign is conventional). This definition only applies in the absence of vorticity since,
using the definition of the projected derivatives and the Ricci equation, we have

[D̂a, D̂b]v = hc
ah

d
bH¯
R̄cd ·v + (D̂au∧D̂bu)·v − 2$abH¯

v̇. (6.50)

When talking about the 3-curvature we implicitly assume that the vorticity vanishes (which
will be true for scalar modes, as described in the next section). If u is orthogonal to
hypersurfaces of constant t, we have u ∝ Dt and the vorticity vanishes. In this case it
clearly makes sense to talk about the curvature in the hypersurface.

Taking the trace of the 3-curvature and using Einstein’s equation gives a relation for
the 3-Ricci tensor

(3)R̄a = Ēa − 1
2κπ

¯a + 2
3κρH

¯ a − 1
3θσ

¯a − 2
9θ2H

¯ a (6.51)

and contracting again gives the scalar 3-curvature

(3)R = 2κρ− 2
3θ2. (6.52)
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The first order variable ηa defined by the projected derivative of the 3-curvature scalar is
given by

ηa ≡ 1
2SD̂a

(3)R = κXa − 2
3θZa. (6.53)

We could also consider the spatial divergence of the 3-Ricci tensor, but using (6.33) and
(6.42) we have SD̂ · (3)R̄a = ηa which could equally well serve as the definition of η. The
propagation equation for ηa can be obtained from (6.30) and (6.18) for the zero order
variables by using (6.16) to commute the time and spatial derivatives giving

η̇a + 2
3θηa = −(3)Rḣa − S(κD̂aD̂·q + 2

3θD̂aD̂·A). (6.54)

6.5 The background equations

In an exact FRW universe the 3-curvature will be proportional to S−2 as the spatial gradi-
ents will vary as 1/S. We therefore define a constant K determining the spatial curvature
in the exact FRW model

(3)Rab ≡ K

S2
H
¯ a∧H

¯ b
(3)R =

6K

S2
. (6.55)

Using this definition in equation (6.52) we obtain the Friedmann equation for the exact
FRW universe

K

S2
= 1

3κρ− 1
9θ2. (6.56)

The critical density ρcrit is the energy density giving a flat universe (K = 0). Writing
ρ = Ωρcrit we therefore have

Ω = 1 +
9K

S2θ2
(6.57)

In the FRW limit the Raychaudhuri equation (6.30) becomes the other Friedmann equation

θ̇ + 1
3θ2 = −1

2κ(ρ + 3p). (6.58)

These are all the equations we need to propagate the background model given values of
the Hubble parameter θ/3 today, Ω today (Ωtot), and the equation of state of the various
components present.

Combining the two Friedmann equations we have

θ̇ = −3
2κ(ρ + p) +

3K

S2
. (6.59)

In a Λ-dominated universe, or during inflation, we have ρ ≈ −p ≈ constant. Neglecting the
curvature term there is then a solution S ∝ eθt/3 and we have exponential expansion. Since
the energy density is roughly constant the 1/S2 factor on the curvature term will rapidly
become insignificant as the universe expands, justifying our neglect of the curvature . The
value of Ω is therefore driven to being very close to unity. So one of they key predictions of
many models of inflation it that the universe today is close to the critical density. However
it is possible to contrive models that are not flat, for example see [67] and references therein.
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In order distinguish between the possibilities we shall need to take account of the curvature
when calculating predictions for the non-flat models.

In a flat matter or radiation dominated universe the universe decelerates under the
gravitational attraction of the matter. During matter or radiation domination ρ ∝ S−3

or ρ ∝ S−4. Observations suggest Ω is of order one today, so whilst the curvature may
have been important in the late evolution of the universe, it can safely be neglected in the
early radiation or matter dominated eras. Conditions on the last scattering surface will
therefore be roughly independent of curvature. What we need to take account of is how
those conditions map onto what we see today.

6.6 Scalar, Vector, Tensor decomposition

At this point it is convenient to write the first-order variables as sums of terms that can be
written as derivatives of scalars, vectors or tensors. We then also refer to a quantity that can
be derived from derivatives of a scalar as a Scalar. A Vector would then be something that
cannot be derived from derivatives of a scalar but can be derived from derivatives of a vector.
And a Tensor can only be derived from derivatives of a rank-two tensor. We do not need
to consider higher than rank-two Tensors because there are no terms in the stress-energy
tensor of rank higher than two and the higher rank equations therefore decouple.

Since the Scalar variables can be derived from a scalar field we can expand in terms of
Qk, the zero order eigenfunctions of the comoving Laplacian S2D̂2:

S2D̂2Qk ≡ S2D̂aD̂aQ
k = k2Qk. (6.60)

where Q̇k = 0 to zero order. Similarly the Tensor equations can be expanded in terms of
PSTF tensor harmonics QT k

ab where

S2D̂2QT k
ab = k2QT k

ab (6.61)

and D̂aQT k
ab = 0. The tensor harmonics can be further split into harmonics with electric

or magnetic parity.
The vector equations can be expanded in a similar way, however the vector modes decay

and are unimportant in the evolution of a standard universe (e.g. one without topological
defects).

6.7 The scalar equations

For scalar modes the vorticity is second order, from (6.13). All the curl terms also vanish,
so from (6.35) we see that the magnetic part of the Weyl tensor B̄a also vanishes for scalar
modes. We expand the other variables in terms of Qk

Al
, PSTF tensors derived recursively

from the scalar harmonics Qk via

Qk
Al

= S
k D̂〈al

Qk
Al−1〉. (6.62)



6.7. THE SCALAR EQUATIONS 81

Our equations contain terms with the divergence of PSTF quantities, so to expand in terms
of the Qk

Al
we need to know the divergence of Qk

Al
. This will be another PSTF tensor

proportional to Qk
Al−1

so that D̂aQk
aAl−1

= xlQ
k
Al−1

. In the FRW limit the commutator of
two spatial derivatives on a tensor Vc gives

[D̂a, D̂b]Vc = K
S2 2V[aγb] ·γc (6.63)

which can be shown from (6.49). Extending this to an l-rank tensor and using (6.62) we
find

D̂2Qk
Al

= k2

S2

[
1− l(l + 1) K

k2

]
Qk

Al
. (6.64)

Using (6.6) we then have

D̂aQk
aAl−1

= xlQAl−1
=

1
l

k

S

[
1− 2l(l − 1) K

k2

]
Qk

Al−1
+

(2l − 3)(l − 1)
l(2l − 1)

xl−1Q
k
Al−1

. (6.65)

The solution to this recurrence relation for xl gives

D̂alQk
Al−1al

= l
2l−1

k
S βlQk

Al−1
(6.66)

where for l > 0 we have defined

βl ≡ 1− (l2 − 1)K/k2. (6.67)

We now define scalar coefficients for the harmonic expansion in terms of Qk
Al

as follows

Xa =
∑

k

kXQk
a qa =

∑

k

qQk
a πab =

∑

k

ΠQk
ab

Za =
∑

k

k2

S ZQk
a σab =

∑

k

k
S σQk

ab ηa =
∑

k

k3

S2 ηQk
a

ha =
∑

k

khQk
a Aa =

∑

k

k
S AQk

a Eab = −
∑

k

k2

S2 φ Qk
ab (6.68)

where from now on the k-dependence is implicit. Factors of k are included to make the
non-stress-energy expansion coefficients dimensionless. The minus sign in the definition of
φ is to make the sign convention agree with that of the Newtonian potential.

It is now convenient to use conformal time η where Sdη = dt, and we now use dashes
to denote derivatives with respect to conformal time. For example the conformal time
expansion rate is H ≡ S′/S = Sθ/3.

The constraint equations derived from the Einstein equation are

2
3k2(β2σ −Z) = κS2q (6.69)

k3β2φ = −1
2κS2 [k(β2Π + X ) + 3Hq] . (6.70)

and the propagation equations are

k(σ′ + Hσ)− k2(φ + A) = −1
2κS2Π (6.71)
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k2(φ′ + Hφ) = 1
2κS2

[
k(ρ + p)σ + kq −Π′ −HΠ

]
(6.72)

The equations relating the other variables are

k2η = κS2X − 2kHZ h′ = 1
3kZ −HA. (6.73)

and the gradient of the 3-curvature evolves as

kη′ = −2KZ − κS2q − 2β2kHA. (6.74)

Finally the momentum conservation equation is

q′ + 4Hq + (ρ + p)kA− kX p +
2
3
kβ2Π = 0 (6.75)

and the propagation equation for the density perturbation is

X ′ + 3h′(ρ + p) + 3H(X + X p) + kq = 0 (6.76)

6.8 Evolution of the potential

During single field inflation the anisotropic stress is exactly zero, and during the later
evolution of the universe it is often small. In this section we review some well known results
for the evolution of scalar perturbations in the absence of anisotropic stress [11].

Taking the time derivative of (6.72), setting Π = 0 and using (6.75), (6.71) and (6.70)
we obtain the single equation

φ′′ + 3H(1 + p′
ρ′ )φ

′ + k2β2
p′
ρ′φ +

[
(1 + 3p′

ρ′ )H
2 + 2H ′ −K

]
φ = 1

2κS2(X p − p′
ρ′X ). (6.77)

For adiabatic perturbations the right hand side vanishes. On large scales (k ¿ H) we can
neglect terms in k2 and for adiabatic perturbations this becomes

φ′′ + 3H(1 + p′
ρ′ )φ

′ +
[
2H ′ + (H2 −K)(1 + 3p′

ρ′ )
]
φ = 0. (6.78)

Defining the zero order variable

B2 ≡ H2 −H ′ + K = 1
2κS2(ρ + p) (6.79)

and using
p′

ρ′
= −1

3
− 2B′

3BH
(6.80)

we obtain

φ′′ + 2
B

S

(
S

B

)′
φ′ +

[
2B

(
H

B

)′
+

2KB′

BH

]
φ = 0. (6.81)

We can remove the term in φ′ by changing variables to u = Sφ/B and after a little work
the equation becomes simply

u′′/u = Θ′′/Θ (6.82)
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where Θ = H/SB. There is therefore a decaying solution where ud = Θ and hence φd =
H/S2. As there is no first derivative term the Wronskian will be a constant and the full
solution is

u = C1 Θ + C2 Θ
∫

dη

Θ2
. (6.83)

Using the decaying solution we can write the Wronskian in terms of φ for the other inde-
pendent solution to derive the conserved quantity

χ = φ + 2
3Ω−1 H−1φ′ + φ

1 + w
+ 2

3

Ω−1 − 1
1 + w

φ (6.84)

where w = p/ρ and Ω = 1 + K/H2. This can be related to the curvature perturbation via

η̄ = −2β2

[
φ + 2

3Ω−1 H−1φ′ + φ

1 + w

]
(6.85)

where η̄ is the curvature perturbation evaluated in the frame of the total energy (where
q = 0). The large scale curvature perturbation η̄ is therefore conserved in a flat universe.
At early times the expansion rate H is large so Ω will be very close to one. Hence η̄
will be accurately conserved on super-Hubble scales in the early universe for all geometries
compatible with Ω ≈ 1 today (assuming negligible anisotropic stress).

In a flat universe when the equation of state is constant (ẇ = 0) we have p′/ρ′ = w. In
this case the coefficient of φ in (6.78) is H2(1 + 3p′/ρ′) + 2H ′ = 0 and it follows that there
is a solution φ = const. The ‘growing’ mode solution is therefore a constant and so

χ =
5 + 3w

3(1 + w)
φ. (6.86)

This is the useful result that on large scales the potentials are constant when there is no
significant curvature and the equation of state is constant. In particular the large scale
potentials will be constant during matter domination (w = 0) and radiation domination
(w = 1/3), and the amplitudes in the two regimes will be related by a factor of 9/10. This
is of course not an exact result since we have ignored the effects of anisotropic stress which
may be significant during the transition from radiation to matter domination.

6.9 Perturbations in single-field inflation

Deriving propagation equations for fluctuations of a scalar field during inflation is straight-
forward and simply amounts to inserting the correct form for the terms in the decomposition
of the stress-energy tensor into the perturbation equations. Covariant equations for infla-
tionary perturbations have been derived before using a particular choice of frame [68]. Here
we give results valid in any frame.

We consider a single scalar field with action

Sψ =
∫

dV4

[
1
2Dψ ·Dψ − V (ψ)

]
(6.87)
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which yields the field equation
D·Dψ = −V,ψ (6.88)

and stress-energy tensor

Tab = DaψDbψ + (V − 1
2Dψ ·Dψ)γa ·γb. (6.89)

For the homogeneous and isotropic background solution the only non-zero terms are

ρ = 1
2 ψ̇2 + V and p = 1

2 ψ̇2 − V (6.90)

The Friedmann equations combine to give the background equation

1
2κψ′2 = H2 −H ′ + K (6.91)

and hence B2 = 1
2κψ′2. The background field equation is

ψ′′ + 2Hψ′ + S2V,ψ = 0. (6.92)

We consider linear perturbations about the background and characterize perturbations of
the scalar field by the first order covariant vector

Va = SD̂aψ. (6.93)

The other components of the stress-energy tensor are then

S2qa = ψ′Va πab = 0 (6.94)

and Xa = SD̂aρ is given by

S2Xa = ψ′V ′a + SAaψ
′2 + VaS

2V,ψ. (6.95)

Taking the spatial derivative of the field equation and commuting derivatives gives

V ′′a + 2HV ′a + Sψ′(A′a + 2HAa) + 2SAaψ
′′ + SZaψ

′ + SD̂aD̂·V = −S2VaV,ψψ (6.96)

though this does not appear to be very useful.
We now obtain the scalar equations by expanding in terms of Qk where

Va =
∑

k

kVQk
a. (6.97)

The propagation equation for the potential becomes

φ′ + Hφ = 1
2κψ′

(
V + ψ′

σ

k

)
(6.98)

and the constraint equation is

−k2β2φ = 1
2κ

[
ψ′V ′ + Aψ′2 + S2VV,ψ + 3Hψ′V]

. (6.99)
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The variable
Ṽ ≡ V + ψ′

σ

k
(6.100)

is frame independent, from (6.48). In the zero shear frame (the Newtonian gauge) we have
Ṽ = V and it also follows from equation (6.71) that A = −φ. Writing the equations in
terms of frame invariant variables in the σ = 0 frame we have

φ′ + Hφ = 1
2κψ′Ṽ (6.101)

and
−k2β2φ = 1

2κ
[
ψ′Ṽ ′ − φψ′2 + S2ṼV,ψ + 3Hψ′Ṽ

]
. (6.102)

Since these the equations contain only frame independent variables they must apply in
all frames. They are equivalent to the well known gauge invariant equations, for example
see [11].

Since the anisotropic stress is zero equation (6.77) applies where the term on the right
hand side is determined by

1
2κS2

(
X p − p′

ρ′X
)

= −4
3k2β2

[
2 +

ψ′′

Hψ′

]
φ =

4
3
k2φ

S2V,φ

Hψ′
. (6.103)

On large scales where we neglect k2 terms this is zero if K = 0, but not otherwise (because
of the β2 factor). The quantity χ is therefore not conserved in a non-flat universe because
we have an additional curvature factor in the equation. However in a flat universe, or
for a model in which the curvature term is negligible, it is conserved. Assuming that the
perturbations remain adiabatic and the large scale anisotropic stresses remain negligible we
can then use the constancy of χ to relate super-Hubble perturbations in the scalar field to
perturbations after re-heating.

In general we have

φ′′ + 2
(

H − ψ′′

ψ′

)
φ′ + 2

(
H ′ −H

ψ′′

ψ′

)
φ +

(
β2k

2 −K
)
φ = 0. (6.104)

which gives the general propagation equation for u ≡ Sφ/ψ′ (differing by a constant from
before, for later convenience) as

u′′ +
(
k2 −Θ′′/Θ

)
u = 2K

(
2 +

ψ′′

Hψ′

)
u. (6.105)

6.10 Quantum generation of perturbations

note this section is basically wrong.
One of the successes of the inflationary scenario is that it can explain the generation of

perturbations. We briefly review the argument here in order to see the form that we might
expect the perturbations to take if inflation is correct. For further details see [11, 69].

We assume that during inflation the expansion is approximately exponential. After a
few e-foldings any initial distribution of particles will have been diluted away, and on scales
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much smaller than the Hubble radius we can assume that we are in a vacuum state of
Minkowski space.

Quantum mechanics says that the inflaton fields will obey the equal time commutation
relations

[ψ(x1), ψ′(x2)] = iδ3(x1 − x2). (6.106)

We expand the field in terms of creation an annihilation operators as

ψ(x) = ψ0 +
1√
2

∫
d3k

(2π)2/3

(
V∗keik·xa−k + Vke

−ik·xa+
k

)
(6.107)

where

[a−k , a+
k′ ] = δ3(k − k′). (6.108)

For large k the perturbation variable obeys the wave equation

V ′′ + k2V = 0 (6.109)

so that a positive frequency solution at time ηi is given by

Vi = k−1/2e−ik(η−ηi). (6.110)

The k−1/2 factor comes from imposing consistency of (6.108) and (6.106). This gives us our
initial condition for V. We can relate it to the initial condition for u using (6.98) so that

|ui| = |Vi|
k

=
1

k3/2
. (6.111)

The evolution equation (6.105) can then be evolved until each mode is well outside the
Hubble radius. Then calculating the curvature perturbation, which is conserved on super-
Hubble scales, we can calculate the initial power spectrum after reheating.

Using the commutation relation the correlation function for the potential is given by

〈0|φ(x)φ(x + r)|0〉 =
∫

dk

k

sin kr

kr
|δφ|2 (6.112)

where

|δφ|2 =
ψ′

S2(2π)2
k3|uk|2 (6.113)

is the power spectrum for φ. In the initial state the factors of k cancel. Many inflation
models therefore predict a nearly scale-invariant spectrum, with corrections arising from
the slightly different time evolution of the different modes. To compute exact results we
would need to know the exact form of the potential over the period in which relevant length
scales leave the horizon.
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6.11 PSTF expansion of the distribution function

After reheating the universe contains a mixture of components, photons, neutrinos, baryons,
CDM, etc. We now need to work out how these evolve given an initial power spectrum for
the potential when the modes are still far outside the horizon.

To study the evolution of the perturbations we need to analyse the propagation of the
distribution function for the various species present. The distribution function will depend
on momentum and position, and therefore depends on the direction of the momentum
in the space orthogonal to u. In this section we discuss how to generate an irreducible
decomposition of a general function of direction in terms of PSTF tensors, the covariant
equivalent of a spherical harmonic expansion.

Consider an arbitrary function f(e) of direction in the 3-space orthogonal to u (e is a unit
projected vector with e2 = −1). The function could be expanded in spherical harmonics
Ylm(θ, φ) of the angle of the vector e. However rank-l PSTF tensors have 2l + 1 degrees of
freedom and form an equivalent representation of the 3d rotation group. We can therefore
equally well expand f(e) in terms of PSTF tensors:

f =
∞∑

l=0

FAl
eAl = F + Fae

a + Fabe
aeb + . . . . (6.114)

where the FAl
are PSTF. This is the covariant equivalent to a spherical harmonic expansion

so
l∑

m=−1

almYlm(θ, φ) = FAl
eAl . (6.115)

The Al notation is useful to represent a string of l indices, and the eAl ≡ ea1ea2 . . . eal .
The reason we use a PSTF expansion is that the tensors in the expansion can be directly
related to other physical quantities like the tensors that make up the decomposition of the
stress-energy tensor.

Since the spherical harmonics are orthogonal we expect

FAl
GBn

∫
eAleBndΩ ∝ δlnFAl

GAl . (6.116)

Equivalently we can write the orthogonality relation
∫

e〈Al〉e
〈Bn〉dΩ = δln∆lh

〈Bl〉
〈Al〉 (6.117)

where h
〈Bl〉
〈Al〉 = h

〈b1
〈a1

. . . h
bl〉
al〉 and the constant ∆l is to be determined. Evaluating the constant

takes a little work but is essential to get obtain the correct numerical factors.
Integrated over angles the eAl must give an isotropic symmetric tensor and we have

∫
e(A2l)dΩ = xlh

(A2l) (6.118)
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where the xl is to be determined. Contracting with h(A2l) the term inside the integral
becomes (−1)l, and

h(A2l)h
(A2l) = 2l + 1 (6.119)

so we have xl = (−1)l4π/(2l + 1) and hence
∫

e(A2l)dΩ =
(−1)l

2l + 1
h(A2l). (6.120)

Using (6.6) we have

h
〈al

〈al
h

Bl−1〉
Al−1〉 = 2l+1

2l−1h
〈Bl−1〉
〈Al−1〉 =⇒ h

〈Al〉
〈Al〉 = 2l + 1 (6.121)

so contracting with h
〈Al〉
〈Bl〉 we have

h
〈Al〉
〈Bl〉

∫
eAl

eBldΩ = (2l + 1)∆l. (6.122)

Using (6.120) we then have

4π(−1)l

2l + 1
h
〈Al〉
〈Bl〉h(Al

Bl) = (2l + 1)∆l. (6.123)

There are (2l)! index permutations in h(Al

Bl), and the contribution to the contraction will
come for those in which a’s and b’s alternate. There are (l!)2 ways to choose (ai, bj) pairs
and 2l permutations within the pairs. We therefore have

∆l =
4π(−1)l

(2l + 1)2
2l(l!)2

(2l)!
h
〈Al〉
〈Bl〉h

〈Bl〉
〈Al〉 =

4π(−2)l(l!)2

(2l + 1)!
. (6.124)

Further properties of PSTF tensors are given in [59].

6.12 The Boltzmann equation

The Boltzmann equation describes evolution of a distribution function f = f(x, p) along a
path described by an affine parameter τ

∂τf = C (6.125)

where C is a collision term. We define the affine parameter so that ∂τx = p and decompose
the four momentum p with respect to our reference velocity u as

p = Eu + λe (6.126)

where e2 = −1. The stress energy tensor is obtained by integrating the distribution function
over energy and angles

Tab =
∫

d3(λe)
E

f(p)papb =
∫

dEdΩλ f(p) pa pb. (6.127)
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The e dependence of the distribution function f = f(x, λ, E, e) and the collision term can
be expanded in terms of irreducible components as

f =
∞∑

l=0

FAl
eAl and C =

∞∑

l=0

CAl
eAl (6.128)

where the FAl
and CAl

are PSTF. Using this multipole expansion we can write the evolution
of the distribution function as

∂τf =
∞∑

l=0

[
∂EFAl

∂τE eAl + p·DFAl
eAl + lFAl

p·DealeAl−1
]
. (6.129)

The component of the geodesic equation p·Dp = 0 in the e direction gives

∂τλ = E2e·A + Eλ(σabe
aeb − 1

3θ) (6.130)

which then implies

habp·Deb = −E2

λ (Aa + e·Aea)− E(eb$ba + σbce
becea + σabe

b) (6.131)

which is first order. Linearizing we therefore have

∂τf = ∂EF (EλAae
a + λ2σabe

aeb)

+
∞∑

l=0

[
(EḞAl

− 1
3λ2θ∂EFAl

)eAl + λD̂aFAl
eaeAl

]
(6.132)

Following [10] we integrate over energy defining the energy integrated multipoles

J
(i)
Al
≡ ∆l

∫ ∞

m
λE2dE FAl

(
λ

E

)n

K
(i)
Al
≡ ∆l

∫ ∞

m
λEdE CAl

(
λ

E

)n

(6.133)

where n = l + 2i is the velocity weight. The factor ∆l is introduced so that the terms in
the stress-energy tensor are simply

ρ = J (0) qa = J (0)
a πab = J

(0)
ab p = 1

3J (1) (6.134)

which follows from (6.117) and (6.127), using the expansion of the distribution function and
equating terms. It is also convenient to define

ρ(i) = J (i) (6.135)

so that ρ = ρ(0). We can now multiply the Boltzmann equation by λ1+2i+lE1−2i−l, integrate
over energy, and equate the corresponding PSTF terms giving

J̇
(i)
Al

+ 1
3θ

[
(1− n)J (i+1)

Al
+ (3 + n)J (i)

Al

]
− l

2l+1D̂〈al
J

(i+1)
Al−1〉 + D̂aJ

(i)
aAl

+
[
(1 + l + n)ρ(i+l−1) + (3− l − n)ρ(i+l)

]
(δ1l

1
3Aa1 − δ2l

2
15σa1a2) = K

(i)
Al

(6.136)
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for l > 0 and the zero multipole equations

ρ̇(i) + 1
3θ

[
(1− n)ρ(i+1) + (3 + n)ρ(i)

]
+ D̂aJ (i)

a = K(i). (6.137)

Here we have used (6.6). These are the propagation equations for the velocity-weighted
multipoles and zero order densities. We characterize the perturbation to the ρ(i) by the
first order comoving spatial gradients

χ(i)
a ≡ SD̂aρ

(i). (6.138)

Taking the spatial gradient of the l = 0 equations and commuting derivatives gives the
propagation equation

χ̇(i)
a +

[
(1− n)ρ(i+1) + (3 + n)ρ(i)

]
ḣa + SD̂aD̂bJ

(i)
b

+1
3θ

[
(1− n)χ(i+1)

a + (3 + n)χ(i)
a

]
= SD̂aK

(i). (6.139)

The above discussion is quite general, so we now move on to consider the scattering
terms that will be important for propagation in the universe.

6.13 Thomson scattering

The only scattering terms we consider are those for the photons and electrons (which are
tightly coupled to the baryons). After electron-positron annihilation the energy of photons
will be much less than the mass of the electrons. The energy transfer during scattering can
then be neglected and the Compton scattering formula we derived in Chapter 3 (equation
(3.111)) reduces to the Thomson result

dσ

dΩ
=

α2

m2
(εf ·εi)2 (6.140)

The only collision terms we shall consider are those for elastic scattering between non-
relativistic electrons and photons since the 1/m factor in the cross-section highly suppresses
scattering from protons. Clearly the cross-section depends on the polarization, and to get
accurate results we need to take account of this. The full treatment with polarization is
rather more complicated and described in [9]. For simplicity we ignore polarization here
and insert the correct polarization term by hand at the end.

For unpolarized radiation the cross-section for scattering from one electron at rest is

σ(θ) =
3

16π
σT (1 + cos2 θ) (6.141)

where the total cross-section is σT . The amount that is scattered out of photon distribution
fγ(p) at a point is given by fγ

−(p) = σT fγ(p) in the rest frame. The amount gained is given
by scattering into the phase space element

fγ
+(p) =

3
16π

σT

∫
fγ(p′)[1 + (e(b)′ ·e(b))2]dΩ′ (6.142)
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so the total collision term is

Cγ = neσT E(b)[fγ
+ − fγ

−] (6.143)

where E(b) is the energy in the electron-baryon frame. Integrating fγ
+ over energy in the

baryon frame gives terms from the stress-energy tensor in the baryon frame:

∫
dE(b)E(b)3fγ

+ =
3

16π

(
ρ(b) + e(b)

a e
(b)
b π(b)ab + p(b)

)
. (6.144)

Photons are massless so E = λ and 3p = ρ. If the baryons have a first order relative velocity
v we have

u(b) = γv(u + v) = u + v (6.145)

to first order since γv = (1 + v2)−1/2 is second order. The terms in the stress-energy tensor
are therefore frame-independent and

ρ(b) + e(b)
a e

(b)
b π(b)ab + p(b) = 4

3ρ + eaebπab (6.146)

to first order. The baryon velocity v is related to the baryon heat flux by qb = (ρb + pb)v
(from q

(b)
b = 0 and using u(b) = u + v).

The energy in the baryon frame is given by

E(b) = E(1 + e·v) (6.147)

and ∫
dE(b)E(b)3fγ

+ = (1 + e·v)3
∫

dEE2E(b)fγ
+ (6.148)

so the energy integrated collision term is

∫
dEE2Cγ =

3
16π

neσT

[
4
3(1− 4e·v)ργ + eae·π

¯a

]− neσT

∫
dEE3fγ(E, e). (6.149)

Performing the multipole expansion of Cγ and equating coefficients we have

Kγ
a = neσT (4

3ργva − qa) Kγ
ab = − 9

10neσT πab (6.150)

and for l > 2 we have Kγ
Al

= −neσT Jγ
Al

. The baryon collision terms will just be the negative
of these since the total stress-energy is conserved.

Including the polarization leads to πab being replaced by 4ζab/3 where

ζab ≡ 3
4πab − 9

2Eab. (6.151)

Here Eab is the electric part of the linear polarization described in [9].
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6.14 The scalar multipoles

We define scalar coefficients for the harmonic expansion of the multipole hierarchy in terms
of Qk

Al
as follows

J
(i)
Al

=
∑

k

J
(i)
l Qk

Al
K

(i)
Al

=
∑

k

K
(i)
l Qk

Al
χ(i)

a =
∑

k

kχ(i)Qk
a. (6.152)

Inserting the harmonic expansion into the multipole equations and using (6.62) and (6.66)
gives the l > 0 propagation equations

J
(i)
l
′ + H

[
(1− 2i− l)J (i+1)

l + (3 + 2i + l)J (i)
l

]
+ k

{
l+1
2l+1βl+1J

(i)
l+1 − l

2l+1J
(i+1)
l−1

}

+k
[
(1 + 2l + 2i)ρ(i+l−1) + (3− 2l − 2i)ρ(i+l)

]
(δ1l

1
3A− δ2l

2
15σ) = K

(i)
l (6.153)

where J
(i)
0 = χ(i). Each spatial gradient evolves as

χ(i)′ = −h′
[
(1− 2i)ρ(i+1) + (3 + 2i)ρ(i)

]
−H

[
(1− 2i)χ(i+1) + (3 + 2i)χ(i)

]
− kJ

(i)
1 .

(6.154)
The total matter variables are given by

X =
∑

χ(0) q =
∑

J1 Π =
∑

J2 (6.155)

where the sum is over the different matter components present. We use a subscript on a
scalar variable when we need to discuss a particular fluid component.

6.15 The fluid components

We shall assume that the fluid contains some baryons, cold dark matter, photons, massless
neutrinos and/or massive neutrinos. The equations for photons and massless neutrinos
simplify considerably since λ = E. It is useful to define

ργIl ≡ Jγl ρνGl ≡ Jν l (6.156)

and the equations then simplify to

I ′l + k
{

l+1
2l+1βl+1Il+1 − l

2l+1Il−1

}
=

−4h′δ0
l −

4
3
kAδ1

l + 8
15kσδ2

l − SneσT (Il − δ0
l I0 − 4

3δ1
l v − 2

15ζδ2
l ) (6.157)

for the photons (in the absence of polarization ζ = 3I2/4), and

G′
l + k

{
l+1
2l+1βl+1Gl+1 − l

2l+1Gl−1

}
= −4h′δ0

l −
4
3
kAδ1

l + 8
15kσδ2

l (6.158)

for the massless neutrinos. Here I0 = χγ/ργ and similarly for the neutrinos. The cold dark
matter has no velocity dispersion by assumption, so from the definition of the J

(i)
Al

(equation
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(6.133)) we only keep the l = 0, l = 1 and i = 0 terms. The l = 1 term is necessary in
general because the reference velocity u may not coincide with the CDM velocity. The
resulting equations are

∆c
′ = −3h′ − kvc (6.159)

where ∆c = χc/ρc and
v′c + Hvc + kA = 0 (6.160)

where we have used qc = ρcvc. In the CDM gauge, in which vc = 0, we see that the
acceleration A = 0. We choose this gauge when we implement the equations numerically in
the next chapter.

The baryons will be non-relativistic over the time scales of interest and so we only keep
the l ≤ 1, i ≤ 1 terms. The reason for keeping the pressure pb = 1

3ρ
(1)
b but not the l = 2

term is that π
¯a is highly suppressed by scattering when there is a high electron density but

the pressure could still be significant. At later times when the electron density is low the
baryon momentum has been redshifted away and both will be insignificant. We only keep
D̂pb terms in the pressure which may be significant on small scales, dropping other terms,
and assume that pressure variations are due to density variations so that

D̂pb = c2
sD̂ρb. (6.161)

The baryon equations are then

∆′
b = −3h′ − 3c2

sH∆b − kv (6.162)

where ∆b = χb/ρb and

Jb1
′ + 4HJb1 − kc2

sχb + kA = −SneσT ργ(4
3v − I1). (6.163)

For massive neutrinos we need to propagate the full energy-integrated equations. We discuss
how to do this in practice later.

6.16 The scalar harmonics

Solutions for the Qk eigenfunctions can be obtained explicitly in spherical polar coordinates
by separation of variables:

(S2D̂2 − k2)Qk = (S2D̂2 − k2)Φl(%)Ylm(θ, φ) = 0 (6.164)

where % is the radial coordinate defined by the radial derivative of a scalar −Se ·D̂ = ∂%.
The Qk are the zero order solutions, so we need to calculate D̂2 for an exact FRW universe.
Isotropy restricts the 3-space to have a constant radius of curvature everywhere, and every
2-space cross section must also be isotropic. The surface of a sphere of radius r defines a
closed isotropic 2-space. We can use % to measure the geodesic distance from a point in
the 2-space, and θ as the angular coordinate about this point. The distance between two
points at the same % and separated by θ will then be θr sinK(%/r). The quantity r sinK(%/r)
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therefore defines the angular diameter distance. There are also isotropic hyperbolic spaces
in which case the sine function is replaced by the sinh function. We use a K subscript on
a function to denote that it should be of the hyperbolic variety for open models.

Moving up to an isotropic 3-space we can write the comoving spatial gradient as

Su∧D̂ = σ%∂% +
σθ

r sinK(%/r)
∂θ +

σφ

r sinK(%/r) sin θ
∂φ (6.165)

where the σ are the corresponding frame vectors which obey

∂θ σ% = σθ cosK(%/r) ∂φ σ% = σφ sin θ cosK(%/r). (6.166)

For small % the result for ∂θ σ% differs by σθ%
2/2r2 from the flat result. The change of σ%

due to the curvature going round a small loop at the origin is therefore given by A/r2σθ

where A is the area of the loop. Comparing with (6.55) for the 3-curvature we see that
|K| = 1/r2. In general we define r ≡ 1/

√
|K|.

Forming S2D̂2 using the above results we obtain the radial part of the harmonic equation

d2Φl

dx2
+ 2 cotK x

dΦl

dx
+ k2r2Φl =

l(l + 1)
sin2

K x
Φl (6.167)

where x = %/r. This equation can be written

1
sinK x

d2

dx2
(sinK xΦν

l ) =
(

l(l + 1)
sin2

K x
− ν2

)
Φν

l . (6.168)

where

ν2 ≡ k2 + K

|K| = k2r2 ± 1. (6.169)

In the flat case K = 0 (sinK x = x) the functions are simply spherical Bessel functions
Φν

l = jl(kx). In general solutions to this equation are called hyperspherical Bessel functions.
We want regular solutions at x = 0 and normalize so that Φν

0(0) = 1 giving

Φν
0(x) =

sin νx

ν sinK x
. (6.170)

In open and flat models ν2 can take any positive value. In closed models there are restrictions
on the allowed values of ν because the space is now spatially finite—for regularity at the
point x = π we require ν to be integer. For l ≥ ν the term in brackets on the RHS of
(6.168) is always positive and there are no non-zero solutions that are zero at x = π as
required for a regular solution. In closed models ν is therefore restricted to be an integer
with ν > l. The ν = 1 solution gives Φ1

0 = const from (6.170), and therefore cannot describe
perturbations. The ν = 2 mode can only contribute to l = 1 modes since β > l, and hence
only contributes to the CMB dipole.

It is straightforward to verify that functions satisfying the recursion relations

dΦν
l

dx
= l cotK xΦν

l − krβl+1Φν
l+1 (6.171)
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and

(2l + 1)
dΦν

l

dx
= kr(lΦν

l−1 − (l + 1)βl+1Φν
l+1). (6.172)

will satisfy (6.168). These are the generalization of the usual spherical Bessel function
recursion relations.1 Differentiating equation (6.172) l − 1 times and evaluating at x = 0
we have the useful result

dl

dxl
Φν

l

∣∣∣∣
x=0

=
(kr)ll!

(2l + 1)!!
= (−kr)l ∆l

4π
. (6.173)

6.17 The line of sight solution

It is possible to find a Green’s function solution to (6.157). Physically this amounts to
adding up the contributions to the anisotropy from each sphere down the past light cone
from the observation point.

Equation (6.157) has a dependence on Il on the right. We define the optical depth

τ(η) =
∫ η0

η
dηSneσT (6.174)

so that SneσT = −τ ′. An integrating factor for (6.157) is then given by e−τ and the RHS
then depends only on the lowest three multipoles.

From the recursion relation (6.172) with x = η/r we see that dnΦν
l /dxn satisfies the

LHS of (6.157) (taking the derivative of (6.172) gives the same equation for the derivative).
Using (6.173) we have

Φν
l |x=0 = δ0

l

dΦv
l

dx

∣∣∣∣
x=0

= 1
3krδ1

l

[
1
3Φν

l +
1

k2r2

d2Φν
l

dx2

]

x=0

= 2
15δ2

l (6.175)

which we can use to construct a Green’s function so that Il today is given by

Il|η0 = 4
∫ η0

dη e−τ

{
(kσ + 1

4SneσT ζ)
[

1
3Φν

l (χ) + 1
k2r2

d2

dχ2 Φν
l (χ)

]

− (kA− SneσT v)
1
kr

d

dχ
Φν

l (χ) +
[

1
4SneσT I0 − h′

]
Φν

l (χ)
}

(6.176)

where χ = (η0 − η)/r. This formula forms the basis of the efficient line of sight algorithm
for computing CMB anisotropies [13] that we discuss in the next chapter.

1Note that our normalization of the Φν
l differs by a curvature factor from that used by many other

authors who use the functions Φν
l

Ql
n=1 β

1/2
n . Our definition removes curvature factors and leads to a faster

numerical implementation, though making the overall normalization dependent on curvature.
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6.18 Instantaneous recombination approximation

The number density of electrons drops very sharply at recombination, so it is a reasonable
approximation to assume that it is instantaneous (at least for scales larger than the depth
of the last scattering surface). This is very useful for getting approximate analytic results
and for understanding the basic physics of the structure of the CMB anisotropy spectrum,
though on smaller scales the effects of variations during recombination can become impor-
tant. With this approximation we have τ ′e−τ ≈ δ(η − η∗) where η∗ is the conformal time
of recombination. Gauge fixing to the CDM so that A = 0 we have

I0
l =

[
(I0 + 4

σ′

k
)Φν

l − (v + σ)
4
kr

d

dx
Φν

l + 4ζ

(
1
3Φν

l +
1

k2r2

d2Φν
l

dx2

)]

η∗
+ 2

∫ η0

η∗
dt φ̇Φν

l

(6.177)
for l > 2 where we have used

σ′′

k
+ 1

3k(σ −Z) = 2φ′ + A′ −HA. (6.178)

In the case that recombination is matter dominated the “monopole” term becomes

1
4I0 + σ′

k = 1
4∆̄γ + 1

3φ− 2
S2κρ

Hφ′ + 2K
κρS2 φ. (6.179)

The quantity ∆̄γ = ∆γ + 4Hq
k is the photon perturbation in the total energy frame where

q = 0. For flat models the last two terms contributing to the monopole are small, and
the main contribution comes from the photon over-density and potential at last scattering.
In the total energy frame the potential varies as mass/radius, and so varies approximately
with the square of the perturbation radius. (This can be seen mathematically in equation
(6.70) for small anisotropic stress). On large scales the Sachs-Wolfe term 1

3φ will therefore
dominate. This represents the gravitational redshifting of the radiation as it climbs out a
potential well. At smaller scales the anisotropies are dominated by the photon perturbation
corresponding to hot and cold spots on the last scattering surface. Due to the sign difference
between these two dominant terms we see that on large scales compressions correspond to
cold spots in the CMB, but on small scales they correspond to hot spots.

The term proportional to the derivative of the Bessel function will be out of phase with
the monopole term and determines the Doppler shifting due to the perturbation velocity.
Contributions from this ‘dipole’ term dominate on scales that are in mid oscillation at last
scattering, when the over-densities will be small but the velocities are high.

The integral of φ̇ determines the integrated Sachs-Wolfe effect, the redshifting or blueshift-
ing of photons as they climb in and out of potential wells on the way from the last scattering
surface to our observation point. The potentials are small (compared to the density per-
turbations) on small scales, so this effect is only significant on large scales. For flat models
we know from equation (6.86) that when the equation of state is a constant the large scale
potentials will be constant. The integrated Sachs-Wolfe term will therefore be very small for
flat models in which recombination is fully matter dominated. However in non-flat models,
or in models where recombination happens before full matter domination, the potentials
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will vary. There can also be a change in the equation of state if the cosmological constant
comes to dominate, leading to an additional contribution.

The term depending on ζ gives the small contribution from anisotropic stress and polar-
ization at last scattering. The hyperspherical Bessel functions relate scales at a position on
the line of sight light cone to angular scales observed on the sky today. Equivalent results in
the Newtonian gauge (in which σ = 0) are given in [70], along with an approximate analytic
analysis of how the perturbations evolve before last scattering.

6.19 The CMB power spectrum

What we observe on the sky today are the CMB temperature anisotropies, which are usually
quantified by the CMB power spectrum. If anisotropies originate from quantum fluctua-
tions in inflation we would expect them to be Gaussian, in which case the power spectrum
contains all the useful information. The Stefan-Boltzmann law relates the temperature to
the radiation power, so that the average temperature is given by

T 4 ∝ 1
4π

∫
dEdΩE3fγ(E, e) =

1
4π

ργ . (6.180)

The fractional temperature variation δT (e) is then given by

[1 + δT (e)]4 =
4π

ργ

∫
dEE3fγ(E, e) (6.181)

and to first order

δT (e) =
4π

4ργ

∞∑

l=1

∆−1
l IAl

eAl . (6.182)

We can also expand δT (e) in spherical harmonics so that

l∑

m=−l

almYlm(θ, φ) =
π

ργ
∆−1

l IAl
eAl . (6.183)

Squaring the above expression and integrating over solid angles we have

1
2l + 1

l∑

m=−l

|alm|2 =
1
4

π

(ργ)2
(2l)!

(−2)l(l!)2
IAl

IAl (6.184)

using (6.117). The CMB power spectrum can be described by Cl which is the statistical
average of this equation

Cl ≡ 1
2l + 1

l∑

m=−l

〈|alm|2〉. (6.185)

For scalar modes the IAl
are expanded in terms of Qk

Al
. We therefore need to be able to

evaluate Qk
Al

QkAl today where the Qk
Al

are given by (from (6.62))

Qk
Al

= (S
k )lD̂〈Al〉Q

k. (6.186)
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The scalar Qk can be written as

Qk = Φν
l (x)Y(lm)

Al
eAl (6.187)

where the Y lm
Al

are the PSTF representation of the spherical harmonics and e·D̂Y(lm)
Al

= 0.
Taking l derivatives in the e direction and evaluating at χ = 0 we have

eAlD̂Al
Qk

∣∣∣
χ=0

=
(−1)l

Sl

dl

dχl
Φν

L

∣∣∣∣
χ=0

YLm
AL

eAL . (6.188)

Using (6.173) and equating coefficients of e〈Al〉 we have

QAl
|χ=0 =

∆l

4π
Y(lm)

Al
. (6.189)

From the orthogonality of the spherical harmonics we know
∫

dΩY(lm)
Al

Y(lm′)
Bl

eAleBl = δmm′ (6.190)

and so, using (6.117), we have

Y(lm)
Al

Y(lm′)Al = δmm′∆−1
l . (6.191)

We can write the mode coefficients in terms of an l-dependent transfer function as

Il = Tl(k)φk (6.192)

where the φk are random variables with

〈φkφk′〉 = P(k)δkk′ . (6.193)

Here P(k) is the power spectrum and δkk′ is defined so that
∑

k δkk′φk = φk′ . The Tl(k) are
the transfer functions which determine the Il for φk = 1.

Putting all this together the power spectrum is given by

Cl =
1
16

1
2l + 1

∑

k

P(k)[Tl(k)]2. (6.194)

We are free to choose how to define the sum over k modes for a given l. It still includes a
sum over the 2l + 1 m-modes, but we can include factors of k as we please. The physical
wavevector, the eigenvalue of the harmonic equation, is given by kphys = k/S. We therefore
choose the sum over k to be independent of scale factor, so

∑

k

=
∑

lm

∫
dk

k
=

∑

lm

∫
dkphys

kphys
(6.195)
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for open and flat models. For closed models the integral is replaced by a sum and we have
∫

dk

k
→

∑
ν

ν

ν2 − 1
(6.196)

using ν2 = k2r2 + 1. We now have

Cl =
1
16

∫
dk

k
P(k)[Tl(k)]2 (6.197)

where the integral is replaced by a sum for closed models.
For an adiabatic power spectrum generated from inflation we set the random variables

φk equal to the potentials. The initial power spectrum P(k) is then approximately |δφ|2
evaluated when the mode has inflated well outside the horizon.

A scale invariant initial power spectrum is one in which the potential is independent of
k and P(k) = const. On large (super-Hubble) scales the potentials are constant in time and
so a scale invariant spectrum implies scale invariant potentials at last scattering. On large
scales the anisotropy is governed by the climb out of the potential wells at last scattering
(assuming matter domination) and so Il ∝ Φν

l from (6.179). The transfer functions are
therefore approximately hyperspherical Bessel functions. For a flat models these become
the usual Bessel functions jl and we have

∫ ∞

0
[jl(x)]2

dx

x
=

1
2l(l + 1)

. (6.198)

Hence for flat models l(l + 1)Cl will be independent of l (for small l) for a scale invari-
ant power spectrum. For open and closed models (and models that change equation of
state significantly after last scattering) the potentials will vary after last scattering and the
integrated Sachs-Wolfe effect causes a non-flat spectrum for l(l + 1)Cl at low l.

This definition, where P(k) = const for a scale invariant spectrum, is consistent with [9,
71] though differing from some other texts. From (6.85) we have φ ∝ β2η̄ for the super-
Hubble modes (φ′ = w′ = 0 for super-Hubble modes during radiation domination). It
follows that with our conventions the energy frame curvature perturbation has

〈|η̄a|2〉 ∝
∫

dk

k

k6

S4
β2

2P(k) (6.199)

from super-Hubble modes.

6.20 Initial conditions

It is possible to find power series solutions to the perturbation equations at early times.
There are five independent regular solutions with vanishing neutrino anisotropic stress at
time zero. The adiabatic growing mode is dominated by the potential perturbation. There
are also three isocurvature modes in which the perturbation is dominated by the baryon,
CDM and neutrino density perturbations, and a velocity mode dominated by the neutrino
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heat flux. The initial conditions for these five modes are given in [72, 73]. The initial
conditions for the massive neutrino hierarchies are discussed in the next section.

Adiabatic initial conditions are predicted by many models of inflation, including the
single field example we have considered, and are often assumed to dominate. Less simple
inflationary models can easily give more complicated predictions. The most general initial
condition will be described by a 5×5 k-dependent symmetric matrix determining the relative
amplitudes and correlations between the modes [74].

6.21 Massive neutrinos

The energy-integrated equations all reduce to one set of equations in the relativistic limit.
Since the neutrinos will be highly relativistic in the very early universe we cannot use
the energy integrated equations to propagate the neutrino hierarchy until the particles
become non-relativistic because an infinite number of equations would be involved, all of
approximately the same order. Instead we do not integrate the equations over energy, but
propagate (an in principle infinite number) of hierarchies for different comoving momenta.
In practice we only need to sample a fairly small number of momenta, and then integrate
numerically over energy to give the terms in the energy integrated equations. This can be
used to propagate the neutrino hierarchy as long as required, or it could be used to provide
the starting conditions for the energy integrated equations once the neutrinos are no longer
highly relativistic. The latter approach is much more efficient if the neutrinos are not very
light, and similar schemes could be used to propagate perturbations for other forms of dark
matter efficiently.

In terms of q ≡ Sλ and ε ≡ SE the geodesic equation (6.130) is

∂τq = 1
S (ε2Aae

a + εqσabe
aeb + q2

S eaD̂aS) (6.200)

so the linearized Boltzmann equation gives

∂qF (ε2Aae
a + εqσabe

aeb + q2

S eaha) +
∞∑

l=0

[
εḞAl

eAl + qD̂aFAl
eaeAl

]
= 0. (6.201)

Using the CDM frame (A = 0) and equating irreducible components this gives the l > 0
multipole equations

ḞAl
− q

ε
l+1
2l+3D̂cFcAl

+ q
ε D̂〈aFAl−1〉 + δl1

1
S

q
εhaq∂qF + δl2σabq∂qF = 0 (6.202)

and the zero multipole equation
Ḟ = 1

3
q
ε D̂aFa. (6.203)

The l = 1 equation contains the first order variable combination

Va ≡ SD̂aF + haq∂qF (6.204)

that we use to characterize perturbations to the distribution function. It integrates to give
the comoving gradient of the density

χa ≡ SD̂aρν =
4π

S4

∫ ∞

0
dqq2εVa. (6.205)
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Differentiating with respect to time and commuting derivatives gives the propagation equa-
tion

V̇a = 1
3

q
εSD̂aD̂bFb + ḣaq∂qF. (6.206)

The scalar equations are obtained by expanding the variables in terms of the harmonics as

Va =
∑

k

kF0Q
k
a and FAl

=
(2l + 1)!
(−2)l(l!)2

∑

k

FlQ
k
Al

(6.207)

giving the multipole equations

F ′
l + k q

ε

{
l+1
2l+1βl+1Fl+1 − l

2l+1Fl−1

}
+

[
δ2l

2
15kσ − δ1lh

′] q∂qF = 0. (6.208)

We can calculate the energy integrated multipoles by integrating over q

J
(i)
l =

4π

S4

∫ ∞

0
dqq2ε

(q

ε

)l+2i
Fl (6.209)

and
χ =

4π

S4

∫ ∞

0
dqq2εF0. (6.210)

Assuming the neutrinos are initially highly relativistic the initial conditions are determined
by those for massless neutrinos as

F0 = −G0

4
q∂qF Fl = −Gl

4
q∂qF. (6.211)

The zero order distribution function is given by the Fermi-Dirac distribution

F (q) ∝ [exp
√

q2+m2S2
d

kTdSd
+ 1]−1 (6.212)

where Td and Sd are the temperature and scale factor at neutrino decoupling. We assume
the particles will be highly relativistic at decoupling so the mass term can be dropped. The
mass therefore only enters through the integrals over q and factors of q

ε in the differential
equations.

An efficient numerical integration of the hierarchy should propagate these equations
whilst the neutrinos are relativistic, and then convert to the truncated integrated equations
when non-relativistic. This is discussed in the next chaper. For a dicussion of massive
neutrinos and their effect on the CMB see [75].

6.22 The tensor equations

Tensor modes describe gravitational waves and can have a significant effect on the CMB
anisotropies we observe. We shall not give the derivations of any of the tensor equations
here. Whilst straightforward in principle, obtaining all the correct numerical factors takes
considerable work and taking full account of the electric and magnetic tensor parts of the
polarization is even more involved. For derivations and discussion see [8, 9].
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Variables can be eliminated to reduce the covariant perturbation equations to two equa-
tions involving the harmonic expansion of the electric part of the Weyl tensor and the shear
(harmonic coefficients E and σ respectively, defined analogously to the scalar coefficients).
These have propagation equations

k2(E′ + HE)− β0k
3σ + k 1

2κS2(ρ + p)σ = 1
2κS2(Π′ + HΠ) (6.213)

and
k(σ′ + Hσ) + k2E = −1

2κS2Π (6.214)

where β0 ≡ 1 + 3K/k2. In the absence of anisotropic stress these combine to give

u′′ +
[
k2 + 2K − (S−1)′′

S−1

]
u = 0 (6.215)

where u ≡ Sσ analogous to the scalar equation. On large scales (and neglecting the cur-
vature) a decaying solution is therefore σd ∝ 1/S2 and the conserved Wronskian is given
by

kχ ≡ σ′ + 2Hσ = Hσ − kE. (6.216)

As in the scalar case we can relate super-Hubble perturbations before and after reheating
using the constancy of χ. When the equation of state is a constant (like in the early radiation
dominated era) E and Hσ are both independently constant.

The variable2

χ ≡ H
σ

k
− E + 1

2κ
S2

k2
Π (6.217)

satisfies χ′ = −kβ0σ and is proportional to the the variable HT employed in non-covariant
approaches [14]. In the absence of anisotropic stress χ = const can be seen directly from
the equation for uT ≡ Sχ

u′′T +
[
k2 + 2K − S′′

S

]
uT = 0 (6.218)

in the large-scale flat-space limit.
Tensor perturbations can be generated during inflation by quantum fluctuations. How-

ever giving a simple GTG-consistent derivation of the effect is not easy. Using GR it is
found that an approximately scale invariant spectrum is expected, as in the scalar case [11].
After reheating anisotropic stresses can become significant and it is necessary to propagate
the tensor modes of the Boltzmann hierarchy. The full set of equations is given in [9], and
they are also listed in the appendix to the next chapter.

6.23 Conclusion

We have seen how covariant methods can be used to provide a physically transparent way
of studying perturbations in cosmology. After a harmonic expansion we have arrived at a
set of scalar equations that can be integrated numerically, as discussed in the next chapter.

22005: Check this in CAMB notes
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The scalar equations are equivalent to those derived by other methods, but the derivations
here use only physically observable quantities and avoid any gauge ambiguities (except for
the choice of frame, which is just specifying who is doing the observing). We have extended
the covariant results of other workers to encompass massive neutrinos and the propagation
of perturbations during single-field inflation.





Chapter 7

Efficient computation of CMB
anisotropies

In this chapter we implement numerically the mode-expanded covariant perturbation equa-
tions to compute predictions for CMB anisotropies given initial conditions for the early
radiation dominated era. The code uses the line of sight Green’s function solution to com-
pute the anisotropies efficiently for flat, open and closed geometries. We present new results
for the polarization power spectra from scalar and tensor perturbations in closed models.

7.1 Introduction

The anisotropy of the CMB contains a great deal of information about the universe and
therefore plays a key role in modern cosmology. Current data suggest that the universe
is within a factor Ωtot ≡ Ωm + ΩΛ = 1 ± 0.2 of the critical density required for a flat
geometry. However open (Ωtot < 1) and closed models (Ωtot > 1) still account for an
important sector of the possible parameter space. Moreover, maximum likelihood searches
require theoretical predictions over a much larger volume of parameter space to establish
reliable error estimates on the parameters under consideration. It is therefore vital to have
a fast and accurate method for calculating anisotropies for models at least within the range
0.4 < Ωtot < 1.6.

The widely-used cmbfast code [13, 14] uses the synchronous gauge equations to compute
predictions for CMB anisotropies. However until very recently this did not support closed
models, excluding an important section of parameter space. In this chapter we describe
efficient code for computing CMB anisotropies in all geometries. Though cmbfast does now
support closed models the closed model code described here was developed independently
and is considerably faster and more robust. It also provides a semi-independent check on
the results of cmbfast.

In the previous chapter we described the linearized equations governing the propagation
of perturbations in nearly FRW models and the relation to the CMB anisotropies. We only
considered the scalar anisotropies in detail, full details of the tensor and polarization equa-
tions can be found in [6, 8, 9]. These equations we now implement numerically, computing
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the power spectrum to an accuracy of about 1%.
Our implementation of the covariant equations is based on the publicly available cmb-

fast1 code [13], itself developed from the COSMICS package2. The cmbfast code uses the
line of sight method to achieve high efficiency without compromizing accuracy. Our imple-
mentation of closed models however differs significantly from cmbfast version 3.2 described
in [76] since our closed code was developed independently. The code described here is up
to eight times faster than cmbfast and has been checked for accuracy over a wide range
of model parameters. We refer to this code as camb, short for “Code for Anisotropies
in the Microwave Background”. It was written in Fortran 90 and is now publicly avail-
able3. It has been used to place good constraints on the curvature of the universe from the
BOOMERANG and MAXIMA data [15–18] and by other authors.

Previous results (prior to cmbfast 3 and camb) for anisotropies in closed models did not
take account of polarization and were obtained by a slow integration of the full Boltzmann
hierarchy (see [77]). Using camb we can compute new results for the scalar and tensor
polarization power spectra in closed models. The intensity power spectra for closed models
also take account of the polarization and therefore differ from previous results that neglected
polarization.

We now describe the key features of the camb implementation that differ from cmbfast.
A brief description of the code also appears in [78].

7.2 Modifying CMBFAST

cmbfast is written in Fortran 77, an obsolete language that makes writing well-structured,
easily-extendible code almost impossible. We devoted a large amount of time to converting
the code to Fortran 90 (a slightly improved programming language—though still not object-
oriented and with many limitations), removing redundancy and imposing some structure.
Once this was completed it was relatively straightforward to implement the covariant equa-
tions simply by replacing the synchronous gauge routines of cmbfast with routines using
the covariant variables.

At this point we had an implementation for flat and open models. In order to support
closed models we needed to adapt the open code. Modifications to use discrete wavenum-
bers are straightforward, but computing the ultra-spherical Bessel functions efficiently is
rather more complicated. We first adapted the open code using the method described in
the next section. We then thoroughly tested the new open code for consistency with the
original open code, and only then did we make the further minor modifications needed to
support closed models. This ensured that the bulk of our code was thoroughly tested before
supporting closed models for which there was no independent check. We could then have
a high confidence in our new results for closed models, with the further check that they
should agree with the flat results in the zero-curvature limit. All results were then checked
for robustness against increases in accuracy parameters (as described later) and accuracy

1http://www.sns.ias.edu/∼matiasz/CMBFAST/cmbfast.html
2http://arcturus.mit.edu/cosmics
3http://www.mrao.cam.ac.uk/∼aml1005/cmb
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problems inherited from cmbfast 2.4.1 were removed. Ultimately the results of the new
cmbfast 3.2 broadly agreed with our code in all models.

7.3 Computing the line of sight integral

By integrating the line-of-sight integral (6.176) by parts the integrand becomes a product
of a Bessel function with some l-independent source term. Once the source terms have
been computed the line of sight integral is therefore a highly efficient way to compute
the anisotropies since the only function that has to be computed for each multipole is a
Bessel function. The equations for the multipole hierarchies and line of sight integrals,
including tensors and polarization, are collected in Appendices A and B. As can be seen
the polarization and tensor multipole follow a similar pattern to the scalar multipoles that
we considered in detail in the previous chapter, and the line of sight method can be applied
in a similar way. For further details of the tensor and polarization equations see [6, 9].

For closed models we assume that the development angle χ satisfies χ < π, where
χ = η0/r and η0 is the conformal age of the universe. This permits calculations with
models up to Ωtot ≈ 1.7 for a matter fraction Ωm ≈ 0.4. For the case χ ≈ π, all lines
of sight converge to the antipodal point close to last scattering, and the power spectrum
becomes featureless [77].

7.3.1 Computing the sources

The sources in the line of sight integral depend only on the lowest few multipoles. They can
therefore be calculated to good accuracy by propagating a truncated Boltzmann hierarchy.
We propagate the hierarchy and background equations using an adaptive Runge-Kutta algo-
rithm as in cmbfast. To truncate the hierarchy with small errors we use the instantaneous
recombination approximation, equation (6.179), to make the approximation Il ∝ Φν

l . Using
the relation

dΦν
l

dx
= krΦν

l−1 − (l + 1) cotK xΦν
l (7.1)

for l > 0 we can then determine I ′l approximately in terms of Il and Il−1. Similar truncation
schemes can be used for the neutrino, polarization and tensor hierarchies. At early times the
electron density is large and we can use the tight coupling approximation to propagate the
lowest photon multipoles—the higher multipoles are strongly suppressed by the scattering.
We include the effects of neutrino perturbations when computing the tensor power spectra
in order to obtain accurate results for the polarization (cmbfast neglects the neutrinos as
they have a small effect on the temperature power spectrum at low multipoles).

We choose to propagate the equations in the CDM frame, where u is the velocity of the
CDM so that the acceleration A = 0. We allow for adiabatic, CDM and baryon isocurvature
initial conditions as in cmbfast (modifying to allow for the neutrino isocurvature modes
would be straightforward). The equations are propagated forward in time for each wave
number starting when all relevant scales are well outside the horizon in the radiation dom-
inated era. Sources are calculated and stored at various time steps up to the present day.
Smaller time steps are used over the period of recombination as this is where the largest
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contributions come from. The sources vary smoothly and can be interpolated as needed to
evaluate them at any given time.

In open and flat models the wavenumbers for which the sources are computed are space
logarithmically for low k, and then in two blocks of increasing linear spacing for higher
k. In closed models the wavenumbers are discretized and the equivalent open/flat values
are rounded to the nearest allowed wavenumber. The sources can be interpolated later to
evaluate them for each wavenumber required when computing the line of sight integral.

For testing purposes and convenience of other users we include an option to use the
synchronous gauge equations [14] originally used by cmbfast. These are just linear com-
binations of our CDM frame covariant equations. Given the objective of computing CMB
anisotropies the implementation of the covariant equations was strictly redundant. The
main reason for the camb code being useful is the way that it handles closed and open
models, which comes down to how it handles the hyperspherical Bessel functions. This is
where the main differences to cmbfast lie.

7.3.2 Evaluating the Bessel functions

The value of the Bessel function at a point can be calculated accurately using the recursion
relation (from (6.171) and (6.172))

(2l + 1) cotK xΦν
l = kr

(
βl+1Φν

l+1 + Φν
l−1

)
(7.2)

for l > 0. The relation is iterated upwards using analytic forms for the first two functions,
or downwards from a guessed (small) value at high l. For high multipoles a large number of
iterations are needed and the evaluation is slow. Two sample Bessel functions4 are plotted
in Figure 7.1.

The differential equation satisfied by the Bessel functions,(6.168) can be written in terms
of ul(x) = sinK xΦν

l (x) as
d2uν

l

dx2
=

(
l(l + 1)
sin2

K x
− ν2

)
uν

l . (7.3)

The hyperspherical Bessel functions can therefore be computed by integrating this equation
from initial values for the function and its derivative. Since we are computing an integral
over x, and therefore need the value of the Bessel function for many closely-separated points,
this is an efficient way to proceed once the starting values are known.

Kosowsky has developed a WKB approximation to the above differential equation [79].
This gives very accurate results for large l except in the region x ≈ π/2 in closed models.
Using the WKB approximation when it is accurate, or recursive evaluation otherwise, we
can quickly evaluate the Bessel function and its derivative at a starting point. We then
integrate the differential equation from that point using the standard fourth-order Runge-
Kutta algorithm.

There is however a potential problem. The functions that we want are well behaved
everywhere, however there are also solutions which are divergent at sinK x = 0. When

4For compatibility the code computes Bessel functions with conventional normalization Φν
l

Ql
n=1 β

1/2
n ,

which are also what is plotted.
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Figure 7.1: Two closed hyperspherical Bessel functions with l = 8, ν = 13 (dashed line)
and l = 20, ν = 40 (solid line). The closed functions have ν − l extrema, have even or odd
symmetry about π/2 depending on whether l is odd or even, and have two regions at either
end where the functions become exponentially small.

implementing numerically it is important to avoid contamination with these solutions. For
sinK x smaller than the turning point value

sinK xt =

√
l(l + 1)

ν
(7.4)

the equation becomes dissipative and uν
l gets exponentially small. It is in this region that

we must be careful to avoid contamination with the irregular solution that will come to
dominate any numerical integration of the differential equation. In open models this only
occurs once and it is possible to integrate up from some point where the Bessel function is
very small. However in closed models there can be two dissipative regions if the development
angle exceeds π/2. Integrating up from the first region will then eventually lead to a problem
in the second region. Figure 7.2 shows what happens if we numerically integrate up and
down from initial values at the turning point. Exactly similar behaviour is found integrating
down and up from the turning point in the χ > π/2 region.

It is clear from the figure that the problem only becomes significant once the numerical
value of the Bessel function becomes small. However since the contribution to the line-of-
sight integral becomes small when Φν

l is small we can simply cut-off the integration at a
suitable point. We start the integration at around the turning point and integrate up and
down from there, cutting-off when the irregular solution contamination causes the derivative
of uν

l to change sign in the dissipative regions. Figure 7.3 shows the exact solution compared
with the values obtained by numerical integration down to the cut-off. As we can see the
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Figure 7.2: The values of Φν
l (χ) obtained by numerically integrating the differential equation

up and down from the inflection point for an l = 224, ν = 388 closed hyperspherical Bessel
function.

two only differ significantly once the Bessel function has fallen to less than 1% of its peak
value, and numerical trials confirm that using the simple cut-off gives errors consistent with
the target 1% accuracy in the power spectrum. It would be a simple matter to devise more
accurate schemes, however we opt for the simplest solution that leads to accurate results.

Using the recursion relation and WKB approximation to quickly evaluate the Bessel
functions at a point allows us to skip ranges of the integration which are insignificant
and re-start again when it becomes important again. For example in many cases the only
significant contributions arise from the sources around recombination and the entire integral
down the line of sight to the last scattering surface can be safely neglected. Skipping these
negligible contributions can give a significant reduction in computation time.

In cmbfast 3 the Bessel functions are evaluated by integrating the differential equation
up from a pre-computed starting point. The problem with irregular-solution contamination
is avoided by using the symmetries of the Bessel functions to find values in the second region
from values generated by upwards integration in the first region. The disadvantage of this
approach is that it prevents a simple scheme for skipping the regions that give negligible
contributions to the integral. The straightforward integration with cut-off in closed models
used by camb makes the code significantly faster, and well as being much simpler, making
the code more transparent and less susceptible to coding errors.
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Figure 7.3: The exact regular solution (small dots) and the numerically integrated solution
with cut-off (large dots) for an l = 224, ν = 388 closed hyperspherical Bessel function. A
log scale has been use to make the error visible — the integrated solution is very accurate
until the function is less than 1% of the peak height.

7.4 The power spectrum: integrating over wavenumber

The wavenumbers sampled in order to perform the numerical integration are logarithmically
spaced for low k and then linearly spaced for higher k as for the k-sampling when computing
the sources . For closed models the integral is replaced by a sum and we can use every
allowed discrete wavenumber. However for nearly flat closed models the number of discrete
wavenumbers we would have to sum is large (k ∼ ν/r where r is large and ν is integer).
When the model is nearly flat we therefore sample the wavenumbers as for open and flat
models (but rounding to the nearest allowed wavenumber, and decreasing the step sizes to
allow for aliasing effects).

7.5 Massive neutrinos

Massive neutrinos are handled by propagating the energy dependent equations whilst the
neutrinos are relativistic and then switching to a truncated energy-integrated hierarchy. We
propagate the momentum-dependent scalar multipole equations (6.208) for 15 co-moving
momenta to give accurate numerical integration over the Fermi-Dirac distribution function
(as in cmbfast). We truncate the hierarchy as in the massless case, though at a lower
multipole since the mass suppresses the higher multipoles. The terms in the neutrino
stress-energy tensor are computed as required by integrating numerically over momentum.

When the momentum has redshifted so that the neutrinos are no longer highly relativis-
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tic we switch to propagating the truncated energy-integrated hierarchy. Keeping terms up
to l + 2i = 3 we have the six equations

χ′ + 3H(χ + χp) + 3h′(ρ + p) + kJ1 = 0 (7.5)

χp′ + 5Hχp + 5h′p− 1
3kJ

(1)
1 = 0 (7.6)

J ′1 + 4HJ1 + k[23β2J2 − χp] = 0 (7.7)

J ′2 + 5HJ2 + k[35β3J3 − 2
5J

(1)
1 ]− 2kσp = 0 (7.8)

J ′3 + 6HJ3 = 0 (7.9)

J
(1)
1

′ + 6HJ
(1)
1 = 0. (7.10)

The last two have the analytic solutions

J3 ∝ S−6 J
(1)
1 ∝ S−6 (7.11)

so to this order we need to propagate only four perturbation equations. The starting values
can be computed by numerically integrating over momentum at the switch-over point. Since
the higher order variables are most important on small scales the swtich over point needs
to be rather later for high k modes. Switching to the energy-integrated equations nearly
halves the computation time compared with using just the momentum-dependent equations
as in previous accurate codes [12, 13].

Recent evidence from oscillation of atmospheric neutrinos provides evidence for a small
mass difference between neutrinos5. This either implies that the neutrinos are all very light,
or that the masses are nearly degenerate. In the computation we allow for Nν species of
massive neutrino of degenerate mass (as in cmbfast). This should be a good approximation
for neutrinos masses that have any cosmological significance as very light non-degenerate
masses would contribute only about Ων ∼ 0.001 [80]. Ultimately data from the CMB may
be able to provide good bounds on the actual magnitude of the neutrino masses rather than
just mass differences deduced from other experiments.

7.6 Numerical stability and accuracy

We have a variety of non-independent variables to choose from when we propagate the
equations. It is important to maintain numerical stability in the differential equations for
the dependent variables. This is especially true for scalar perturbations with isocurvature
initial conditions, where a poor choice of dependent variables can lead to large violations of
the constraint equations. Numerical studies show that propagating η, the gradient of the
3-Ricci curvature, and σ, the shear, give good numerical stability for all initial conditions.
If we instead propagate Z, the gradient of the expansion, the equations are unstable for
isocurvature initial conditions.

5http://www.hep.anl.gov/ndk/hypertext/nuindustry.html
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We introduce various global parameters that control the accuracy of the computations
— controlling the time steps, k-sampling, etc. It is thus possible to compute power spectra
with different settings and thereby asses the accuracy of the computation. We computed
power spectra for a grid of different models and adjusted the accuracy parameters so that
the results agreed to better than 1% with results generated with much higher accuracy
settings.

To give an accurate computation of the ionization history of the universe we allow use
of RECFAST, described in [81]. This corrects errors at about the 2% level.

cmbfast 3.2 gives inaccurate results for the tensor quadrupole in flat models [82]. We fix
this by computing the Bessel functions directly where errors in cmbfast’s Bessel function
interpolation are important.

The power spectrum computed will of course depend on the initial power spectrum. We
use essentially the same driver routine as cmbfast to allow for the most frequently used
spectra and to be consistent with the parameters expected by cmbfast. However as these
are only accurate for a small number of inflationary models [82] we allow for a custom initial
power spectrum so the code can be used for more general models.

7.7 Interpolating the power spectrum

In closed models a given linear scale at last scattering subtends a larger angle on the sky
today than in open or flat models. Conversely scales in open models subtend smaller angles.
This geometric effect shifts power in the CMB spectra to smaller l in closed models and
larger l in open models. This effect is generally much larger than shifts due to a change in
sound horizon at last scattering that can result from varying the other parameters. Since
cmbfast only computes the power spectra at a few values of l and interpolates between
them we need to adjust the l-sampling according to the the curvature to maintain accurate
interpolation. We calculate the shift in the power spectrum due to the curvature for each
model and adjust the multipoles at which the Cl are computed dynamically. This contrasts
with the cumbersome static approach of cmbfast 3.2.

7.8 Results

We have verified our calculations against results obtained with cmbfast version 3.2 with
good agreement well into the damping tail.

In Figure 7.4 we plot the intensity and polarization power spectra in ΛCDM models
assuming no reionization. The power spectra for the polarization and tensor modes are
defined analogously to (6.197), for details see [9]. One model is closed (Ωtot = 1.2, ΩΛ = 0.8),
while the other is flat (Ωtot = 1, ΩΛ = 0.6). In both cases we take the matter fraction
Ωm = 0.4, baryon fraction Ωb = 0.045, and Hubble’s constant H0 = 65kms−1Mpc−1. For
the scalar modes, we assume adiabatic initial conditions with a scale-invariant initial power
spectrum.

Since the cosmological constant and curvature are unimportant at early times, and
the physical matter densities ΩmH2

0 and ΩbH
2
0 are the same, the two models evolve the
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Figure 7.4: Scalar (left) and tensor (right) intensity and polarization power spectra in a
closed CDM model (Ωtot = 1.2, ΩΛ = 0.8; thin lines), and a flat model (Ωtot = 1, ΩΛ = 0.6;
thick lines). In both cases Ωm = 0.4, Ωb = 0.045, and H0 = 65kms−1Mpc−1. The upper
solid lines are the intensity, the lower ones the electric component of the polarization CEE

l ,
and the dashed lines the magnetic component CBB

l . The scalar and tensor intensities are
normalized to unity at l = 10. There is no scalar magnetic polarization as it has no source
terms for a scalar mode.
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same way until last scattering. There are two main differences caused by difference in
curvature. The shift in the spectrum comes from the different angular diameter distances
to the last scattering surface caused by the geometry—in the closed model the geodesics
converge so features on the last scattering surface appear at larger angular scales on the
sky. The differences at low l arises from the integrated Sachs-Wolfe effect—the variation of
the potentials after last scattering given by the time integral in (6.177).

7.9 Conclusion

We have implemented the covariant cosmological perturbation equations numerically, pro-
ducing accurate and fast code. The code has been used in the extraction of cosmological
parameters from observational data given certain assumptions about the initial power spec-
trum. Ultimately it should be of use for reconstructing the initial power spectrum and
constraining the inflationary potential from forthcoming high-quality CMB data6, espe-
cially in conjunction with more accurate determinations of cosmological parameters from
other independent experiments.

6For example MAP (http://map.gsfc.nasa.gov) and Planck (http://astro.estec.esa.nl/SA-
general/Projects/Planck)
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Appendix A: The Scalar Equations

The full intensity and electric polarization1 hierarchies are:

I ′l + k
{

l+1
2l+1βl+1Il+1 − l

2l+1Il−1

}
=

−4h′δ0
l − 4kAδ1

l + 8
15σδ2

l − SneσT

(
Il − δ0

l I0 − 4
3δ1

l v − 2
15ζδ2

l

)

E ′l + k
{

(l+3)(l+1)
(2l+1)(l+1)βl+1El+1 − l

2l+1El−1

}
= −SneσT

(El − 2
15δ2lζ

)
.

The line of sight integral formulae are:

Il|η0 = 4
∫ η0

dη e−τ

{
(kσ + 1

4SneσT ζ)
[

1
3Φν

l (χ) + 1
k2r2

d2

dχ2 Φν
l (χ)

]

−(kA− SneσT v)
1
kr

d

dχ
Φν

l (χ) +
[

1
4SneσT I0 − h′

]
Φν

l (χ)
}

El|η0
=

l(l − 1)
k2r2

∫ η0

dηSneσT e−τζ
Φν

l (χ)
sin2

K χ

Appendix B: The Tensor Equations

For tensors define

βl ≡ 1− (l2 − 3)
K

k2
ν2 ≡ k2 + 3K

|K| .

The intensity, electric and magnetic polarization1 hierarchies are

I ′l + k
{

(l+3)(l+1)
(2l+1)(l+1)βl+1Il+1 − l

2l+1Il−1

}
− 8

15kσδ2l = −SneσT

(
Il − 2

15ζδ2l

)

E ′l + k
{

(l+3)2(l+1)2

(2l+1)(l+1)2
βl+1El+1 − l

2l+1El−1

}
− 4k

l(l + 1)
β

1/2
0 B̄l = −SneσT

(El − 2
15ζδ2l

)

B′l + k
{

(l+3)2(l+1)2

(2l+1)(l+1)2
βl+1Bl+1 − l

2l+1Bl−1

}
+

4k

l(l + 1)
β

1/2
0 Ēl = −SneσT

(Bl − 2
15ζδ2l

)

and the line of sight integral formulae are

Il|η0
=

l(l − 1)β−1/2
1

k2r2

∫ η0

dη
(
kσ + 1

4SneσT ζ
) Φν

l (χ)
sin2

K χ

El|η0
=

l(l − 1)β−1/2
1

k2r2(l + 1)(l + 2)

∫ η0

dηe−τSneσT ζ

[
d2

dχ2
+ 4 cotK

d

dχ
+ 2(1 + cot2K)− k2r2

]
Φν

l (χ)

Bl|η0
=
−2νl(l − 1)β−1/2

1

k2r2(l + 1)(l + 2)

∫ η0

dηe−τSneσT ζ̄

[
d

dχ
+ 2 cotK

]
Φν

l (χ).

(bars here denote magnetic parity variables). For derivations, further references, and a
discussion of the mode expansion and power spectra see [8, 9].

1The definitions of the polarization harmonic expansion variables include an energy density factor and
minus sign, so for example ζ = 3/4I2 + 2/9E2.



Chapter 8

Conclusions

In Chapter 2 we showed how GA could be used as a powerful tool for co-ordinate free ma-
nipulations of geometric objects. Geometric calculus allowed for an extension of traditional
tensor calculus and we developed a notation that allows our results to be related easily to
those using traditional methods. We then applied GA to a variety of topics, demonstrating
the advantages of the GA approach in several areas.

In Chapter 3 we showed how Dirac theory can be given a physically transparent GA
formulation. We showed how the theory could be applied to single particle scattering,
handling spin-dependence in a natural way. Spin orientations were handled directly and
we had no need to perform spin-sums or introduce the abstract gamma-matrices used in
other approaches. We attempted to study more general scattering calculations involving
more than one particle with some success. However multi-particle constructions in GA
seem rather forced, and this remains an area where traditional methods still have some
advantage. It would be interested to see whether quantum field theories could be studied
in GA maintaining the advantages of the single particle formalism. However at the multi-
particle level things are rather more complicated and it is not clear whether the GA approach
would offer any advantages over traditional methods.

In the remaining chapters we considered various topics in gravitational physics. In
Chapter 4 we showed how gauge theory gravity could be formulated in GA, and discussed
an extension to a scale invariant theory. In most cases this reduces to an extension of GR
with a massive vector field and seems to have limited interest, though suggesting yet another
possible dark matter candidate. It remains to be seen whether local scale invariance is a
useful idea or not, and future work could consider the quantum implications and interactions
with the standard model fields.

The gauge theory formulation of gravity allows for significant freedom in the choice of
action, even with the addition of scale invariance. In Chapter 5 we showed that instanton
configurations of the rotation gauge field gave rise to topological terms in the action. We
constructed the independent quadratic terms for the action and calculated the modified field
equations for some of the possible terms. Although we found the field equations we did not
perform any further analysis, largely because of the complexity and number of the equations.
It would be interesting to look at the effect of the additional terms on the gravitational force
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law, and in particular at the effects in cosmology and black hole formation. If the current
observational disagreements with the CDM cosmological model are confirmed, and other
forms of dark matter do not form a successful substitute, it may become a pressing matter to
consider different gravitational theories. The issue of quantization of gauge theory gravity
should also be addressed.

For the moment General Relativity still appears to be an accurate theory, and so we
expect any extended gravitational theory to tend to GR for most cases of observational
interest. In the remaining chapters we assumed that GR was a sufficiently accurate the-
ory and studied the propagation of covariant perturbations in cosmology. By construction
the covariant perturbation variables are observables, and the covariant analysis in Chap-
ter 6 gave a physically transparent derivation of the propagation equations. We extended
previous results to include massive neutrinos and studied the Boltzmann equation via a
two dimensional hierarchy of energy-integrated multipole equations. We also discussed the
propagation of covariant perturbations during inflation, and related the equations to the
well known gauge-invariant equations.

At the moment there is great interest in the measurement of CMB anisotropies, and it
is vital to have accurate theoretical predictions to compare with observations. In Chapter 7
we implemented the mode expanded covariant perturbation numerically to compute pre-
dictions for the CMB power spectrum given a set of cosmological parameters and an initial
power spectrum. The code supports closed models and computes accurate results with high
efficiency. We were able to compute new predictions for CMB anisotropies in closed models
taking full account of polarization. The code was made publicly available and has already
proved useful in the extraction of cosmological parameters from observational data and in
constraining the curvature of the universe.

Forthcoming high-precision data should determine many parameters with unprecedented
accuracy and enable a reconstruction of the initial power spectrum. Ultimately we would
like to learn about the period of inflation, and to this end it would be useful to construct
code for computing the initial power spectrum from an inflationary model. We have already
derived the propagation equations for the inflaton perturbations and shown how they relate
to the initial power spectrum. Implementing the equations numerically could give accurate
predictions for the initial power spectrum without having to use the slow-roll or other
approximations. The new high-precision CMB data should then be able to pin down the
inflationary theory to some limited accuracy. It may also be possible to study the generation
of perturbations from a primordial instanton to constrain the ultimate origin of the universe.
Much work remains to be done however before the covariant approach can be used to study
quantum effects, and there remains the question of which gravitational theory is the correct
one to quantize.

There are a many effects that we have not considered that can be significant to CMB
anisotropy measurements. In particular we have ignored gravitational lensing and the non-
linear effects than can become important at high angular resolutions. The code we have
developed could be extended to take these into account, and a covariant analysis would
provide a useful check on previous results. There is also the possibility of quintessence,
warm and interacting dark matter, and a wide variety of other variations on the standard
cosmological model. To test these models accurately against observations we shall need
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robust theoretical models and accurate numerical codes to take the new effects into account.
The covariant approach to cosmological perturbations can readily be extended to study non-
linear effects, and should prove useful in high-resolution studies of CMB and in the evolution
of non-linear structures.

Overall we have shown that various topics can be handled in a physical co-ordinate in-
dependent way using Geometric Algebra and covariant methods. Whilst we do not propose
a dogmatic adherence to a particular mathematical approach these methods appear to be
a good way to tackle a variety of physical problems. Cosmology is at a turning point —
within the next decade we should have accurate data that could tell us the main cosmo-
logical parameters with great accuracy. There remains much work to be done to ensure
that the theoretical predictions are robust, and to enable the observations to constrain the
inflationary model and matter content of the universe. Covariant methods should prove a
useful tool for tackling this work.
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theory of gravity: A comparison with General Relativity theory. Gen. Relativ. Grav.,
21(11):1107, 1989.

[57] M.S. Longair. Galaxy Formation. Springer, 1998.

[58] J. Peacock. Cosmological Physics. CUP, 1999.

[59] T. Gebbie and G. Ellis. 1+3 covariant cosmic microwave background anisotropies I:
Algebraic relations for mode and multipole representations. astro-ph/9804316, 1999.

[60] T. Gebbie, P.K.S. Dunsby, and G.F.R. Ellis. 1+3 covariant cosmic microwave back-
ground anisotropies. II: The almost-Friedmann Lemaitre model. astro-ph/9904408,
1999.

[61] G.F.R. Ellis and H. van Elst. Cosmological models. In M Lachièze-Rey, editor, Theo-
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