LSS-CMB Correlations

Planck collaboration 2013

Antony Lewis
http://cosmologist.info/
CMB-LSS correlations

- $T \Delta_N$
- $TT\Delta_N$, TT-CIB
- TTT
- $E\Delta_N$, ETT
- $T\Delta_b$, $E\Delta_b$
Overdensity: correlated with positive Integrated Sachs-Wolfe (net blueshift)

Underdensity: correlated with negative Integrated Sachs-Wolfe (net redshift)

\[\Delta T_{\text{ISW}}(\hat{n}) = 2 \int_0^{\chi^*} d\chi \hat{\Psi}(\chi \hat{n}; \eta_0 - \chi) \]
The linear power spectrum of observed source number counts

Anthony Challinor1,2 and Antony Lewis3,1,*

\[
\Delta N(\hat{n}, z, m < m_*) = \delta_N(L > L_{ss}) - \frac{1}{\mathcal{H}} \hat{n} \cdot \frac{\partial v}{\partial \chi} + (5s - 2) \left[\kappa - \frac{1}{\chi} \int_{\eta_A}^{\eta} (\phi + \psi) d\eta \right] \\
+ \left[\frac{2 - 5s}{\mathcal{H} \chi} + 5s - \frac{\partial \ln[\sigma^3 N(L > L_{ss})]}{\mathcal{H} \partial \eta} + \frac{\mathcal{H}}{\mathcal{H}^2} \right] \left[\psi + \int_{\eta_A}^{\eta} (\dot{\phi} + \dot{\psi}) d\eta - \hat{n} \cdot \mathbf{v} \right] + \frac{1}{\mathcal{H}} \dot{\phi} + \psi + (5s - 2) \phi.
\]

Full GR calculation of observed galaxy counts as a function of angle and redshift, with bias and magnification bias

- Velocity
- Gravitational potential
- Source evolution
- Lensing
- Correct definition of bias on horizon scales
- Correlation to CMB temperature, polarization
- Numerical code, CAMB sources
 \url{http://camb.info/sources/}

(+linear 21cm, galaxy lensing, and all cross-correlations
+perturbed recombination)

\texttt{arXiv: 1105.5292} \hspace{0.5cm} \texttt{See also Yoo et al, Bonvin \& Durrer.}
CMB temperature – number counts correlation

\[\Delta T(\mathbf{n}) \approx \int_{\eta_0}^{\eta_A} d\eta e^{-\tau} \left(\hat{\mathbf{n}} \cdot \mathbf{v} + \psi + \phi \right) \times \Delta_N(\mathbf{n}, z, m < m_*) \approx \delta_N - \frac{1}{H} \hat{\mathbf{n}} \cdot \frac{\partial \mathbf{v}}{\partial \chi} - \left(\kappa + \frac{\mathbf{n} \cdot [\mathbf{v} - \mathbf{v}_{\text{obs}}]}{H \chi} \right) (2 - 5s). \]

+ other terms

Z=0.6, \(\sigma_z = 0.05, b = 1, s = 0 \)

Z=3, \(\sigma_z = 0.2, b = 2, s = 0.42 \)

(note: redshift distortion correlation almost exactly cancels)

TT as a probe of Large Scale Structure
Weak lensing of the CMB

\[\tilde{T}(\hat{n}) = T(\hat{n}') = T(\hat{n} + \alpha) \]
\[\alpha = \nabla \psi \]
\[\psi(\hat{n}) = -2 \int_0^{\chi*} d\chi \Psi(\chi\hat{n}; \eta_0 - \chi) \frac{f_K(\chi* - \chi)}{f_K(\chi*)f_K(\chi)} \]
Non-Gaussianity/statistical anisotropy
reconstructing the lensing field

Marginalized over (unobservable) lensing field:

\[T \sim \int P(T, \psi) d\psi \]

- Non-Gaussian statistically isotropic temperature distribution

For a given lensing field:

\[T \sim P(T|\psi) \]

- Anisotropic Gaussian temperature distribution
Fractional magnification \sim convergence $\kappa = -\nabla \cdot \alpha/2$

$+ \text{shear modulation}$

\[
\langle \tilde{T}(l_2)\tilde{T}(l_3) \rangle = C_{l_2}^{TT} \delta(l_2 + l_3) \left[1 + \kappa \frac{d \ln(l_2^2 C_{l_2}^{TT})}{d \ln l_2} + \hat{l}_2 \hat{l}_2 \frac{d \ln C_{l_2}^{TT}}{d \ln l_2} \right]
\]

e.g. Bucher et al
Variance in each C_l measurement $\propto 1/N_{\text{modes}}$

$N_{\text{modes}} \propto l_{\text{max}}^2$ - dominated by smallest scales

\Rightarrow measurement of angular scale ($\Rightarrow \kappa$) in each box nearly independent

\Rightarrow Uncorrelated variance on estimate of magnification κ in each box

\Rightarrow Nearly white ‘reconstruction noise’ $N_{l}^{(0)}$ on κ, with $N_{l}^{(0)} \propto 1/l_{\text{max}}^2$
Lensing reconstruction information mostly in the *smallest scales* observed

- Need high resolution and sensitivity
- Almost totally insensitive to large-scale T (so only *small-scale* foregrounds an issue)

- Use separate frequencies and check consistency
- Combine (Minimum Variance – MV) for best estimate
- Also cross-check with foreground cleaned maps

Reconstruction Noise $N_l^{(0)}$
Planck full-sky lensing potential reconstruction: map of integrated LSS at $0.5 < z < 6$

Note – about half signal, half noise, not all structures are real: map is effectively Wiener filtered

Planck collaboration 2013
Reconstruction noise budget

Lensing maps are reconstruction noise dominated, but maps from different channels are similar because mainly the same CMB cosmic variance.
Power spectrum of reconstruction $TT \times TT \Rightarrow C_{l}^{\psi\psi}$

Planck collaboration 2013
Lensing (TT) × LSS

$TT \times \text{counts}$

$TT \times \text{CIB (Planck internal)}$

$\nu=100\ GHz\ (x\ 100)$

$\nu=143\ GHz\ (x\ 100)$

$\nu=217\ GHz\ (x\ 100)$

$\nu=353\ GHz\ (x\ 100)$

$\nu=545\ GHz\ (x\ 10)$

$\nu=857\ GHz\ (x\ 0.1)$

$>50\sigma\ detection$
TTT: Correlation between lenses and CMB temperature, C_{TT}^{ψ}?

- The late Integrated Sachs Wolfe effect (late ISW) at low redshift from decaying potentials
- Large-scale modes that span recombination and also act as lenses
- The early Integrated Sachs Wolfe effect (early ISW) due to the transition from radiation to matter domination, and decaying modes
- Lenses close to last-scattering being correlated to density perturbations that have infall giving a Doppler signal in the CMB
- Doppler signal from scattering at reionization
- Lenses at last-scattering that directly correlate perturbations to lensing at the recombination surface
- Non-linear Rees-Sciama signal at low redshift from non-linear gravitational clustering
- Non-linear SZ signal from scattering in clusters
- Correlations due to foreground contaminants

Linear effects, All included in self-consistent linear calculation with CAMB

Non-linear growth effect
- estimate using e.g. Halofit

Potentially important, but frequency dependent
- ‘foregrounds’, e.g. CIB
Contributions to the lensing-CMB cross-correlation, $C_l^{T\psi}$

+ small (but not entirely negligible) δN perturbed expansion effect

(note Rees-Sciama contribution is small, numerical problem with much larger result of Verde et al, Mangilli et al.; see also Junk et al. 2012 who agree with me)
Planck lensing bispectrum detection, $C_l^{T\psi}$

Large cosmic variance and reconstruction noise, but ‘detected’ at $\sim 2.5\sigma$.

Table 2. Results for the amplitude of the ISW-lensing bispectrum from the SMICA, NILC, SEVEM, and C-R foreground-cleaned maps, for the KSW, binned, and modal (polynomial) estimators; error bars are 68% CL.

<table>
<thead>
<tr>
<th></th>
<th>SMICA</th>
<th>NILC</th>
<th>SEVEM</th>
<th>C-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSW</td>
<td>0.81 ± 0.31</td>
<td>0.85 ± 0.32</td>
<td>0.68 ± 0.32</td>
<td>0.75 ± 0.32</td>
</tr>
<tr>
<td>Binned</td>
<td>0.91 ± 0.37</td>
<td>1.03 ± 0.37</td>
<td>0.83 ± 0.39</td>
<td>0.80 ± 0.40</td>
</tr>
<tr>
<td>Modal</td>
<td>0.77 ± 0.37</td>
<td>0.93 ± 0.37</td>
<td>0.60 ± 0.37</td>
<td>0.68 ± 0.39</td>
</tr>
</tbody>
</table>

- Importance to separate from f_{NL}
 $\Delta f_{NL} \sim 7$
CMB Polarization – LSS Correlation?

Quadrupole Anisotropy

Thomson Scattering

Linear Polarization

Hu astro-ph/9706147
Yes, expect E polarization – LSS correlation on large scales

Lewis, Challinor & Hanson (2011),
Number counts at $z < 3$ + CMB lensing gives possible future $\sim 6\sigma$ LSS-CMB polarization correlation
Rayleigh scattering: Rayleigh × CMB correlations
The last-but-one scattering surface: probing baryon LSS at $z \sim 1000$ with multi-tracer CMB

following Takada & Sasaki 1991; Yu, Spergel, Ostriker 2001

\[\sigma_R(\nu) = \left[\left(\frac{\nu}{\nu_{\text{eff}}} \right)^4 + \frac{638}{243} \left(\frac{\nu}{\nu_{\text{eff}}} \right)^6 + \frac{1626820991}{136048896} \left(\frac{\nu}{\nu_{\text{eff}}} \right)^8 + \ldots \right] \sigma_T \]

Lee, 2005 \(\nu_{\text{eff}} \equiv \sqrt{8/9cR_A} \approx 3.1 \times 10^6 \text{GHz} \)
Temperature and polarization power spectrum at high frequencies [note detectability of Rayleigh signal only limited by noise (same CMB fluctuations)]

TT, EE, TE, BB cross-frequency power spectra

May be detectable with Planck; large-signal with any future Pixie/Core/PRISM-like mission.
Conclusions

• $TT\Delta, TT\phi$ CMB-LSS correlators (bispectra) are significant
 - First full-sky lensing reconstruction from TT with Planck
 - $TT\Delta$ detected at high significance, both counts and CIB
 - TTT Temperature bispectrum mainly from ISW-ϕ correlation
 - now detected at 2.5σ
 - important to model accurately for non-Gaussianity studies

• Also E- LSS correlators (up to $\sim 6\sigma$ cosmic variance limit), not detected yet

• Frequency dependent Rayleigh C_ℓ - may be detectable with Planck, easily in future at high σ
 - very good consistency check on foreground and recombination modelling/BAO, + lensing separation
Rayleigh scattering from tensor modes