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Brief summary of some CAMB definitions, parameterizations, and details of internal implemen-
tation. Plus some random notes.

I. THE CAMB CODE

The physics is contained in the equations.f90 file. Everything is in conformal time and units of megaparsecs. The
dtauda routine returns 1/a′ (scale factor a = S), where the conformal Hubble rate is a′/a. This is used to compute the
conformal age of the universe, and background evolution for the pre-computed ionization history and should always
be finite. Background density variables include a factor of a2, like grho ≡ κa2ρ where κ ≡ 8πG.

The initial conditions for the scalars and tensors are in the initial and initialt routines (see above for details).
The derivs and derivst functions return the differential equations - a vector y′ of derivatives of the variables being
evolved.

The output and outputt routines calculate the sources for integration against the Bessel functions.

A. Gauge and perturbation definitions

CAMB propagates the covariant equations in the zero-acceleration frame, in which the CDM velocity is zero. This
is equivalent to the synchronous gauge.

Note that CAMB uses the variable etak = kηs , where ηs = −η/2 (in the CDM frame) is the usual synchronous
gauge variable. Here η is the curvature perturbation variable as in the previous section. The fractional density
perturbation variables are called clxc (∆c), clxg (∆γ), clxr (∆ν), clxb (∆b) etc. The synchronous gauge variable
hs appears in the CDM frame as h′s = 6h′ = 2kZ. The l = 1 moments are handled in terms of the heat fluxes qi where
ρiqi = (ρi + pi)vi. The total heat flux appears as dgq = κa2

∑
i ρiqi in the code, and the total matter perturbation is

dgrho = κa2
∑
i ρi∆i.

Other variables are the shear σ and perturbation to the expansion rate Z. They are related by

2

3
k2(β2σ − Z) = κa2

∑
i

ρiqi = dgq

k2η = κa2
∑
i

ρi∆i − 2kHZ = dgrho− 2kHZ.

In terms of synchronous gauge variables σ = (ḣs + 6η̇s)/2k. Note that in the non-flat case ηs above is β2η of Kodama
& Sasaki.

II. NEUTRINOS AND DARK RADIATION

We assume a Fermi-Dirac distribution for neutrinos when they are relativistic. For the massless case the result
is independent of the Fermi-Dirac assumption, so massless dark radiation can be modelled as effective neutrinos.
When the particles have non-negligible mass, the Fermi-Dirac assumption is not general (it is a good approximation
for massive active neutrinos, and is also equivalent via parameter redefinition with the Dodelson-Widrow model for
sterile neutrinos (see [1–3]), but may not be correct for more general forms of massive dark radiation).
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Massive neutrinos are assumed to decouple when relativistic and remain exactly thermal with zero chemical poten-
tial, so eigenstate i has occupation number (in natural units)

Ni(p) =
1

e
p
Ti + 1

(1)

where p is the momentum. All equations for massive neutrinos have mass dependence determined by the dimensionless
ratio used in the code nu masses(i) ≡ mic

2/(kBT
0
i ), which determines the particle velocities as a function of redshift.

Neutrinos are assumed to be highly non-relativistic today, so

ρ0
i = min

0
i = fiΩνρ

0
c (2)

where fi is the fraction of the total neutrino energy density in eigenstate i, and ρc is the critical density. Number den-
sities are set from the thermal distribution at decoupling while relativistic, where for a Fermion with spin degeneracy
two:

ni =
3ζ(3)

2π2

(kBTi)
3

~3c3
. (3)

The decoupling of the standard active neutrinos is nearly, but not entirely, complete by the time of electron-positron
annihilation. This leads to a slight heating of the neutrinos in addition to that expected for the photons and hence
to a small departure from the thermal equilibrium prediction Tγ = (11/4)1/3Tν between the photon temperature Tγ
and the reference neutrino temperature Tν defined by this relation. The actual temperature Ti for any eigenstate is
given by reference to the thermal result Tν , so that

Ti ≡ g1/4
i Tν , (4)

where this defines gi, the neutrino degeneracy factor. Hence while relativistic

ni = g
3/4
i nν ρi =

7

8
aRT

4
i = giρν = gi

7

8

(
4

11

)4/3

ργ , (5)

where nν and ρν are the results for the thermal prediction. ρν (for one massless neutrino) is in the code as the variable
grhor ≡ 8πGρ0

ν/c
2, which is used to set the densities of the actual species. The dimensionless mass variable is given

by

mi

T 0
i

=
fiΩνρ

0
c

n0
iT

0
i

=
fiΩνρ

0
c

gin0
νT

0
ν

∝ fiΩν
gi

ρ0
c

ρ0
ν

. (6)

For each eigenstate the code only needs mi/T
0
i and ρi = giρν , the latter being stored in grhormass(i) = gi × grhor

and grhornomass for massless neutrinos.
Note that if we fix the total Ων , having Ns neutrino eigenstates with equal gi and fi (and hence equal mass), is

code-equivalent to having one neutrino with g =
∑
i gi, f =

∑
fi, since mi/Ti (which determines particle velocities)

and
∑
i ρi (which determines the density) remain the same, even though physically having one state with g =

∑
i gi

corresponds to having a smaller number density of hotter more-massive neutrinos. ci neutrinos of degenerate mass
and the same temperature can therefore modelled simply as a single state with appropriately multiplied geff

i = cigi.
The physical mass mi inferred from Ωνh

2 does of course depend on the number of physical neutrino eigenstates.
Assuming the neutrinos are highly non-relativistic today, we have

Ωνh
2 ≈ 16ζ(3)

11π

(
kBT

0
γ

)3 Gh2

c5~3H2
0

∑
i

cig
3/4
i mi ≈

∑
i cig

3/4
i mi

94.07 eV
. (7)

(taking T 0
γ = 2.7255K).

Energy density in neutrinos or dark radiation is conventionally described using an effective energy density number
Neff when relativistic, so Neff =

∑
i cigi. The default assumption is three active neutrinos with Neff = 3.046 [4, 5],

corresponding to gi = 3.046/3 for each of three neutrinos.



3

CAMB input parameters

The degeneracy parameters can be specified explicitly for each eigenstate (and the massless neutrino), or the degen-
eracies can be set internally to give a total Neff assuming all eigenstates have the same temperature, which is the most
natural assumption for the case of three active neutrinos. This is determined by the share delta neff parameter, as
described further below. In all cases when there is more than one massive eigenstate nu mass fractions = f1 f2 . . .
determines the fraction of the energy density today Ωνh

2 that is associated with each eigenstate, and should sum
to 1, e.g. nu mass fractions = 0.75 0.25 to have the first state of two eigenstates accounting for three quarters of
the total neutrino density today. When run CAMB prints out the physical eigenstate masses, calculated assuming a
thermal distribution (different in the Dodelson-Widrow re-interpretation).

1. share delta neff = T

In this case all neutrinos are set to have the same gi per physical mass eigenstate. massive neutrinos = c1 c2 . . .
is an array of nu mass eigenstates integers, specifying the physical number of neutrinos per (degenerate) eigenstate.
The non-integer part of the real number massless neutrinos is used to determine the neutrino temperature, so the
total effective density parameter is Neff = massless neutrinos +

∑
i ci and for all species

gi =
Neff

[Neff ]
(8)

where [] denotes the integer part.
For example, for the simple case of one massive neutrino and two massless neutrinos, all with standard temperatures

so Neff = 3.046, you could use massless neutrinos = 2.046, massive neutrinos = 1.
For an inverted hierarchy of degenerate mass, you could have massless neutrinos = 0.046, massive neutrinos =

3.
For mass splitting but with two degenerate, e.g.: nu mass eigenstates = 2, massless neutrinos = 0.046,

massive neutrinos = 2 1, nu mass fractions = 0.7 0.3.
Note that since the non-integer part of Neff is used to define the temperature, the physical model for massive

neutrinos is discontinuous as the total crosses an integer boundary: Neff = 2.99 is two physical neutrinos with high
temperature, Neff = 3.046 is three physical neutrinos with standard temperature. However the results are continuous,
only the interpretation in terms of physical mass changes abruptly. Also note that for massless neutrinos < 1, no
massless neutrinos are actually included unless massive neutrinos = 0.

2. share delta neff = F

This allows an arbitrary specification of different neutrino temperatures and masses, where now
nu mass degeneracies = geff

1 geff
2 . . . must be specified explicitly. massless neutrinos determines the g for mass-

less neutrinos. The physical numbers of neutrinos is still specified by massive neutrinos, but does not affect the
result except when writing out the physical mass: power spectra etc. from massive neutrinos = 2 1 should be the
same as from massive neutrinos = 1 1 for the same nu mass degeneracies, but the physical neutrino mass of the
first eigenstate is larger in the second case.

Note that the degeneracy inputs are the total, i.e. geff
i = cigi, so nu mass degeneracies = 2,

massive neutrinos = 2 corresponds to two neutrinos with thermal temperature Tν (contributing 2 to the total
Neff), nu mass degeneracies = 1, massive neutrinos = 2 corresponds to two neutrinos with reduced temperature
(contributing 1 to the total Neff)

3. Further examples

To within rounding these combinations of input parameters are equivalent: share delta neff = T ,
massive neutrinos = 1, massless neutrinos = 2.046 and share delta neff = F , massive neutrinos = 1,
massless neutrinos = 2.0307, nu mass degeneracies = 1.0153.

Consider 2 massless active and 1 massive active neutrino all at the standard temperature (3.046/3)1/4Tν , where
the massive active neutrino has mi = 0.06eV and hence contributes Ωaνh

2 = 0.00064. If there is also one sterile (at a
different temperature) contributing ∆Neff to the total so that Neff = 3.046 + ∆Neff , and the total density parameter
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FIG. 1: Three recombination histories all with τ = 0.09. The dashed line is the model typically used by CMBFAST and CAMB
prior to March 2008 with f = 1. The black line is the new model with ∆z = 0.5, the red line with ∆z = 1.5.

Ωνh
2 = 0.00064 + Ωsνh

2, then use: share delta neff = F , massless neutrinos = 2.0307, nu mass eigenstates =
2, massive neutrinos = 1 1, nu mass degeneracies = 1.0153 ∆Neff , nu mass fractions = X Y where X =
0.00064/Ωνh

2 and Y = Ωsνh
2/Ωνh

2.

III. REIONIZATION

CAMB’s reionization model is described in the appendix of [6] and reproduced here. The reionization.f90
module can easily be changed for different models. The optical depth to reionization is defined by

τ =

∫ η0

0

dηSnreion
e σT (9)

where nreion
e is the number density of free electrons produced by reionization and η0 is the conformal time today. This

is not quite the same as the number density of electrons at late times because there is a small residual ionization
fraction from recombination. At the level of precision required we can neglect this difference (. 10−3), though CAMB
keeps the ionization history smooth my mapping smoothly onto the recombination-residual.

Since ne ∝ (1 + z)3xe(z), and reionization is expected to happen during matter domination,

τ ∝
∫

dz xe
√

1 + z ∝
∫

d[(1 + z)3/2]xe. (10)

It is therefore handy to parameterize xe as a function of y ≡ (1 + z)3/2. As of March 2008 CAMB’s default parame-
terization uses a tanh-based fitting function

xe(y) =
f

2

[
1 + tanh

(
y(zre)− y

∆y

)]
, (11)

where y(zre) = (1 + zre)
3/2 is where xe = f/2: i.e. zre measures where the reionization fraction is half of its

maximum. Since the fitting function is antisymmetric about the mid point (and assuming it does not extend out of
matter domination)

τ =

∫ η0

0

dηSnreion
e σT ≈ akthom× f

∫ zre

0

dz
dη

dS
. (12)



5

In other words, with this parameterization the optical depth agrees with that for an instantaneous reionization model
at the same zre for all (matter-dominated) values of ∆y (CAMB’s variable akthom is npσT today). Except in early
dark energy models this result is quite accurate for the expected range of zre. In practice the input parameter is ∆z

and ∆y is taken to be 1.5
√

1 + zre∆z.
To keep the implementation general (e.g for early dark energy models), the default reionization module actually

maps τ into zre by doing a binary search. This method is also generally applicable for other monotonic models, e.g.
the module also will work fine using a window function in a different power of (1 + z) (i.e. Rionization zexp 6= 3/2),
though in this case there is in general a more complicated relation between the optical depth and that of a sharp
reionization model. Changing the exponent allows flexibility in relatively how quickly reionization starts and ends,
with values 0.5− 2.5 changing the EE power by a couple of percent at fixed τ .

If hydrogen fully ionizes f = 1. However the first ionization energy of helium is similar, and it is often assumed that
helium first re-ionizes in roughly the same way. In this case f = 1 + fHe, where fHe = nHe/nH is easily calculated
from the input helium mass fraction YHe. This is CAMB’s default value of f ; typically f ∼ 1.08

In addition at z ∼ 3.5 helium probably gets doubly ionized. Due to the low redshift this only affects the optical
depth by ∼ 0.001, but for completeness this is included using a fixed tanh-like fitting function (modifying the above
result for τ appropriately). Some reionization histories are shown in Fig. 1.

IV. INITIAL POWER SPECTRA

A. Scalar parameterization

CAMB uses a standard running power law model for the primordial super-horizon power spectrum Ps(k) of curvature
perturbations (and similarly for isocurvature modes), with

lnPs(k) = lnAs + (ns − 1) ln(k/ks) +
nrun

2
[ln(k/ks)]

2 +
nrun,run

6
[ln(k/ks)]

3.

The input parameters are pivot scale pivot scalar (ks), and scalar spectral index (ns), plus optional running
parameters and scalar nrun (nrun) and scalar nrunrun (nrun,run). The amplitude at the pivot scale is set by

scalar power amp (As). Wavenumber (k) scales are in Mpc−1. You can generate results for multiple initial power
spectra at one go, so all the input parameter (except pivot scales) are followed by the index, e.g. scalar power amp(1)
for the first set.

B. Tensor parameterizations

CAMB supports three parameterizations of the primordial tensor power spectrum, set in the .ini file
by tensor parameterization integer variable. These use the input pivot scale pivot tensor (kt), and
tensor spectral index (nt). You can also specify a tensor running, tensor nrun (nt,run) so that

lnPt(k) = lnAt + nt ln(k/kt) +
nt,run

2
[ln(k/kt)]

2.

The tensor power amplitude At is set depending on the parameterization, either using initial ratio (r), or
tensor amp (At) directly:

• tensor parameterization = 1

At = rAs

The tensor amplitude here is independent of ns and the scalar pivot scale (convenient if generating tensors
separately), but does depend on As (scalar amp). The parameterization only gives Pt(kt) = rPs(kt) if the
tensor and scalar pivots are the same. This option is the default, and was used by CAMB prior to April 2014.

• tensor parameterization = 2

At = rPs(kt)

This allows the use of r defined at any given tensor pivot scale, and Ph(kt) = rPs(kt). However for different
tensor/scalar pivot scales the result depends on ns and the scalar pivot.
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• tensor parameterization = 3
Here tensor amp gives the amplitude At directly.

This directly parameterizes the tensors in terms of their amplitude, which removes dependence on the shape
and amplitude of the scalar spectrum (and is what tensor BB observations are actually probing directly).

C. Tensors in a closed universe

The power spectrum Pt = Ph defined by the transverse traceless part of the metric tensor hab so that

〈habhab〉 =
∑
ν

ν

ν2 − 1

ν2 − 4

ν2
Ph(ν)

where the ν2 − 4 factor is the mode sum l = 2 . . . ν − 1 of 2l+ 1. Note that ν2/(ν2 − 1) is no longer the measure over
ln k for tensor modes. The CMB result is then

Cl =
π

32

(l + 1)(l + 2)

2l(l − 1)

∑
ν

ν

ν2 − 1

ν2 − 3

ν2
Ph(ν)[T

(l)
I (ν)]2.

Internally CAMB uses the Hk, the metric tensor variable, and the shear σk. The relation between Hk, Ek (the
electric part of the Weyl tensor) and the shear σk is

Hk = −ν
2 − 3

ν2 − 1
(2Ek + σ′k/k)

and H ′k = −kσk. Using the series solution the relation between the initial Ek and Hk is

Ek = −2Rν + 10

4Rν + 15

ν2 − 1

ν2 − 3
Hk

where Rν is the ratio of the neutrino and total radiation densities.

V. MULTIPOLE EQUATIONS, HARMONIC EXPANSION AND Cl

Here we summarize the equations of the covariant approach.
The photon multipole evolution is governed by the geodesic equation and Thomson scattering, giving [7]

İAl
+

4

3
ΘIAl

+DbIbAl
− l

2l + 1
D〈aIAl−1〉 +

4

3
IAa1δl1 −

8

15
Iσa1a2δl2

= −neσT
(
IAl
− Iδl0 −

4

3
Iva1δl1 −

2

15
ζa1a2δl2

)
(13)

where IAl
is taken to be zero for l < 0 and

ζab ≡
3

4
Iab +

9

2
Eab (14)

is a source from the anisotropic stress and E-polarization. The equation for the density perturbation DaI is obtained
by taking the spatial derivative of the above equation for l = 0. The corresponding evolution equations for the
polarization multipole tensors are [7]

ĖAl
+

4

3
ΘEAl

+
(l + 3)(l − 1)

(l + 1)2
DbEbAl

− l

2l + 1
D〈alEAl−1〉 −

2

l + 1
curlBAl

= −neσT (EAl
− 2

15
ζa1a2δl2)

ḂAl
+

4

3
ΘBAl

+
(l + 3)(l − 1)

(l + 1)2
DbBbAl

− l

2l + 1
D〈alBAl−1〉 +

2

l + 1
curl EAl

= 0. (15)

For numerical solution we expand the covariant equations into scalar, vector and tensor harmonics. The resulting
equations for the modes at each wavenumber can be studied easily and also integrated numerically.
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A. Scalar, vector, tensor decomposition

It is useful to do a decomposition into m-type tensors, scalar (m = 0), vector (m = 1) and 2-tensor (m = 2) modes.
They describe respectively density perturbations, vorticity and gravitational waves. In general a rank−` PSTF tensor
XAl

can be written as a sum of m−type tensors

XAl
=

l∑
m=0

X
(m)
Al

. (16)

Each X
(m)
Al

can be written in terms of l −m derivatives of a transverse tensor

X
(m)
Al

= D〈Al−m
ΣAm〉 (17)

where DAl
≡ Da1Da2 . . .Dal and ΣAm

is first order, PSTF and transverse DamΣmAm−1am
= 0. The ‘scalar’ component

is X(0), the ‘vector’ component is X
(1)
a , etc. Since GR gives no sources for XAm

with m > 2 usually only scalars,
vectors and (2-)tensors are considered. At linear order they evolve independently.

B. Harmonic expansion

For numerical work we perform a harmonic expansion in terms of zero order eigenfunctions of the Laplacian QmAm
,

D2QmAm
=
k2

S2
QmAm

, (18)

where QmAm
is transverse on all its indices, DamQmAm−1am

= 0. So a scalar would be expanded in terms of Q0, vectors

in terms of Q1
a, etc. We usually suppress the labelling of the different harmonics with the same eigenvalue, but when

a function depends only on the eigenvalue we write the argument explicitly, e.g. f(k).
For m > 0 there are eigenfunctions with positive and negative parity, which we can write explicitly as Qm±Am

when
required. Since

D2( curlQAm
) = curl (D2QAm

) =
k2

S2
curlQAm

(19)

they are related by the curl operation. Using the result

curl curlQmAm
=
k2

S2

[
1 + (m+ 1)

K

k2

]
QmAm

(20)

we can choose to normalize the ± harmonics the same way so that

curlQm±Am
=
k

S

√
1 + (m+ 1)

K

k2
Qm∓Am

. (21)

A rank-` PSTF tensor of either parity may be constructed from Qm±Am
as

QmAl
≡
(
S

k

)l−m
D〈Al−m

QmAm〉 (22)

and a X
(m)
Al

component of XAl
may be expanded in terms of these tensors. They satisfy

D2QmAl
=

k2

S2

(
1− [l(l + 1)−m(m+ 1)]

K

k2

)
QmAl

DalQmAl−1al
= βml

k

S

(l2 −m2)

l(2l − 1)
QmAl−1

curlQm±Al
=
√
βm0

m

l

k

S
Qm∓Al

(23)
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where βml ≡ 1−
{
l2 − (m+ 1)

}
K/k2 and l ≥ m.

Dimensionless harmonic coefficients are defined by

σ
(m)
ab =

∑
k,±

k

S
σ(m)±Qm±ab H

(m)
ab =

∑
k,±

k2

S2
H(m)±Qm±ab

q(m)
a =

∑
k,±

q(m)±Qm±a E
(m)
ab =

∑
k,±

k2

S2
E(m)±Qm±ab

π
(m)
ab =

∑
k,±

Π(m)±Qm±ab I
(m)
Al

= ργ
∑
k,±

I
(m)±
l Qm±Al

Ωa =
∑
k,±

k

S
Ω±Q1±

a A(m)
a =

∑
k,±

k

S
A(m)±Qm±a

(DaX)(m) =
∑
k,±

k

S
(δX)(m)±Qm±a (24)

where the k dependence of the harmonic coefficients is suppressed. We also often suppress m and ± indices for
clarity. The other multipoles are expanded in analogy with IAl

. The heat flux for each fluid component is given by
qi = (ρi + pi)vi, where vi is the velocity, and the total heat flux is given by q =

∑
i qi. In the frame in which Ωa = 0

gradients are purely scalar ¯(δX)
(1)

= 0.

C. Harmonic multipole equations

Expanded into harmonics, the photon multipole equations (13) become

I ′l +
k

2l + 1

[
βml+1

(l + 1)2 −m2

l + 1
Il+1 − lIl−1

]
=

− SneσT
(
Il − δl0I0 −

4

3
δl1v −

2

15
ζδl2

)
+

8

15
kσδl2 − 4h′δl0 −

4

3
kAδl1 (25)

where l ≥ m, I0 = δργ/ργ , Il = 0 for l < m, and m superscripts are implicit. The scalar source is h′ = (δS/S)′.
The equation for the neutrino multipoles (after neutrino decoupling) is the same but without the Thomson scattering
terms (for massive neutrinos see Ref. [8]). The polarization multipole equations (15) become

Em±l
′ + k

[
βml+1

(l + 3)(l − 1)

(l + 1)3

(l + 1)2 −m2

(2l + 1)
Em±l+1 −

l

2l + 1
Em±l−1 −

2m

l(l + 1)

√
βm0 B

m∓
l

]
= −SneσT (Em±l − 2

15
ζm±δl2)

Bm±l
′ + k

[
βml+1

(l + 3)(l − 1)

(l + 1)3

(l + 1)2 −m2

(2l + 1)
Bm±l+1 −

l

2l + 1
Bm±l−1 +

2m

l(l + 1)

√
βm0 E

m∓
l

]
= 0. (26)

D. Integral solutions

Solutions to the Boltzmann hierarchies can be found in terms of line of sight integrals. The flat vector and tensor
results are given in Ref. [9]. General scalar and tensor results are in [7] (though Il in that paper differs by a curvature
factor).

E. Power spectra

Using the harmonic expansion of IAl
the contribution to the Cl from type-m tensors becomes

C
TT (m)
l =

π

4

(2l)!

(−2)l(l!)2

∑
k,k′,±

〈I±l,kI
±
l,k′〉Q

±
Alk

QAl±
k′ . (27)
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The multipoles Il can be related to some primordial variable XAm =
∑
k

(
X+Qm+

Am
+X−Qm−Am

)
via a transfer function

TXl defined by Il = TXl X. Statistical isotropy and orthogonality of the harmonics implies that

〈X±k X
±
k′〉 = fX(k)δkk′ (28)

where
∑
k δkk′Yk = Yk′ and fX(k) is some function of the eigenvalue k. The normalization of the QmAl

is given by∫
dV QmAl

QmAl =

∫
dV

(
−S
k

)l−m
QmAm

DAl−mQmAl
= αml

(−2)l−m(l +m)!(l −m)!

(2l)!
N (29)

where we have integrated by parts repeatedly, then repeatedly applied the identity for the divergence (23). The

normalization is N ≡
∫
dV QAmQAmand αlm ≡

∏l
n=m+1 β

m
n . By statistical isotropy Cl = (1/V )

∫
dV Cl and hence

C
TT (m)
l =

π

4

(l +m)!(l −m)!

(−2)m(l!)2

∑
k,±

N

V
αml |TXl (k)|2fX(k) (30)

We choose to define a power spectrum PX(k) so that the real space isotropic variance is given by

〈|XAm
XAm |〉 =

∑
k,±

|N |
V
fX(k) ≡

∫
d ln k PX(k) (31)

so the CMB power spectrum becomes

C
TT (m)
l =

π

4

(l +m)!(l −m)!

2m(l!)2

∫
d ln k PX(k)αml |TXl (k)|2. (32)

For a non-flat universe
∫
d ln k is replaced by some some other measure which should be specified when defining the

power spectrum. In a closed universe the integral becomes a sum over the discrete modes. Note that we have not had
to choose a specific representation of QAm

or
∑
k.

The polarization Cl are obtained similarly [7] and in general we have

C
JK(m)
l =

π

4

[
(l + 1)(l + 2)

l(l − 1)

]p/2
(2l)!

(−2)l(l!)2

〈JAl
KAl〉
ρ2
γ

(33)

=
π

4

[
(l + 1)(l + 2)

l(l − 1)

]p/2
(l +m)!(l −m)!

2m(l!)2

∫
d ln k PX(k)αml J

X
l K

X
l (34)

where JK is TT (p = 0), EE or BB (p = 2) or TE (p = 1). We have assumed a parity symmetric ensemble, so
CTBl = CEBl = 0.

For tensors we use HT where hij =
∑
k,± 2HTQ

2
ij and hij is the transverse traceless part of the metric tensor. This

introduces an additional factor of 1/4 into the result for the Cl in terms of Ph and THT

l .
The numerical factors in the hierarchy and Cl equations depend on the choice of normalization for the ` and k

expansions. Neither e〈Al〉 nor QAl
are normalized, so there are compensating numerical factors in the expression for

the Cl. If desired one can do normalized expansions, corresponding to an `- and k-dependent re-scaling of the Il and
other harmonic coefficients, giving expressions in more manifest agreement with Ref. [10].

VI. QUINTESSENCE

CAMB uses a fluid model by default (see below), but a quintessence module is available separately.
The background field equation for a scalar field ψ can be written

d

dS

(
S2ψ′

)
+
S3V,ψ
H

= 0.

This allows ψ(S) and ψ′(S) to be evaluated, and hence the background evolution since H relates the time and S
derivatives. The density and pressure are

S2ρψ = 1
2ψ
′2 + S2V S2pψ = 1

2ψ
′2 − S2V
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The linearized exact field equation is

ψ′′ + 2Hψ′ +DaDaψ = −S2V,ψ.

where Da is the spatial covariant derivative. Defining the first order perturbation

Va ≡ SDaψ

and fixing to the zero-acceleration frame (the CDM frame) this implies the following equation for the perturbations

V ′′a + 2HV ′a + SZaψ′ + S2DaD
bVb = −S2VaV,ψψ.

This corrects the equation in [11], where other definitions are given. Performing the harmonic expansion one gets the
scalar equation

V ′′ + 2HV ′ + kψ′Z + k2V = −S2VV,ψψ.

This is what tells you that you can’t consistently have V = 0 in an evolving background if there are other perturbations

present (Z 6= 0). The heat flux and density perturbation X (ψ)
a = SDaρψ give the scalar relations

S2q = kψ′V S2Xψ = ψ′V ′ + S2VV,ψ.

There is no contribution to the anisotropic stress. CMBFAST/CAMB propagate quantities like κS2ρ, hence it is
useful to work with φ ≡

√
κψ and similarly for V.

Constant w

A useful parameterization is w ≡ pψ/ρψ = constant, which implies

ρψ = ρ0S
−3(1+w) V = 1

2 ψ̇
2 1− w

1 + w
.

This potential and ψ′ are easily obtained in terms of S

S2V =
1− w

2
S2ρψ ψ′

2
= |1 + w|S2ρψ.

For w < −1 we take the action to have a negative kinetic term, so

ψ′′ + 2Hψ′ +DaDaψ ± S2V,ψ = 0

etc, where ± is the sign of 1 + w. The derivatives needed are then

V,ψ = ∓3(1− w)

2
Hψ̇ S2V,ψ = ∓3(1− w)

2
Hψ′,

V,ψψ = ∓3(1− w)

2

[
Ḣ − 3

2
H2(1 + w)

]
S2V,ψψ = ∓3(1− w)

2

[
H′ − 1

2H
2(5 + 3w)

]
.

In many cases constant w is actually a very good approximation as far as the CMB is concerned, with [12]

weff ≡
∫
daΩψ(a)w(a)∫
daΩψ(a)

.

In quintessence domination ρ→ ρψ and V,ψψ → ±9(1− w2)H2/2.

Fluid equations

Following [13] the default CAMB module actually uses the fluid equations. For varying w these are

δ′i + 3H(ĉ2s,i − wi)(δi + 3H(1 + wi)vi/k) + (1 + wi)kvi + 3Hw′ivi/k = −3(1 + wi)h
′ (35)

v′i +H(1− 3ĉ2s,i)vi + kA = kĉ2s,iδi/(1 + wi) , (36)

where hatted quantities are evaluated in the frame co-moving with the dark energy. These equations are implemented
in the code with w′ = 0, and are equivalent to using the above, with the additional possibility of using the rest-frame
sound speed ĉ different from one for generalized dark energy models (ĉ = 1 for quintessence)
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VII. TIGHT COUPLING

At early times the baryons and photons are tightly coupled; the opacity τ−1
c ≡ SneσT is large. This means

δ ≡ qγ − 4/3vb ≈ 0, and propagating the full photon hierarchy is impossible due to numerical problems in the source
term proportional to τ−1

c δ. The solution it to do an expansion in τc which is valid for ε ≡ max(kτc,Hτc) � 1. To
first order in ε, assuming c2s ∝ 1/S and dropping tiny terms in c2s,

v′b =
1

1 +R

(
kc2s∆b +

k

4
R(∆γ − 2β2πγ)−Hvb

)
(37)

+

(
2H

1 +R
+ (ln τ−1

c )′
)

3R

4(1 +R)
δ − Rτc

4(1 +R)2

(
4(H′ +H2)vb + k

[
2H∆γ + ∆′γ − 4c2s∆

′
b

])
(38)

δ =
τc

3(1 +R)

(
k∆γ − 4kc2s∆b + 4Hvb

)
(39)

πγ =
32

45
kτc(vb + σ) (40)

E2 =
πγ
4

(41)

where R ≡ 4ργ/3ρb. Note that here I use the sign for E2 consistent with that in the code, which is related to the
polarization tensor by a minus sign. To a good, but not good enough, approximation ne ∝ 1/S3 over the region of
interest, so (ln τ−1

c )′ ≈ −2H. However using this result does lead, for certain k, to a region in time in which neither
the tight coupling approximation is accurate nor the full equations are stable. This is probably exacerbated by the
RECFAST reionization history which doesn’t change so abruptly at recombination. Using a numerical value for
(ln τ−1

c )′ avoids the problem. Including the values for πγ and E2 makes the switch from tight coupling more robust,
and allows it to be pushed to later times thereby speeding up the evolution on small scales.

A few terms from a next-order tight coupling expansion [14] are used where they make a significant difference,
though the gain in terms of delaying the switch-off time is modest.

VIII. INITIAL CONDITIONS

For adiabatic modes we choose the initial conditions are set by the amplitude of χ, the comoving curvature per-
turbation (conserved on super-Hubble scales for the adiabatic mode). In general this is defined via the perturbation
in the 3-Ricci scalar, ηa ≡ 1

2SDaR(3) with harmonic coefficient η, on co-moving hypersurfaces (total heat flux q = 0,
denoted by a bar), so that

η̄ = 2β2

[
Φ +

2

3
Ω−1H−1Φ′ −Ψ

1 + w

]
≡ −2β2χ.

where (for closed models) β2 = (ν2−4)/(ν2−1). Here Φ and Ψ are defined as in [15, 16], Ψ is the Newtonian potential,
and Φ = ΦH is the potential satisfying the Poisson equation β2k

2Φ = 1
2κS

2X̄ . In general Φ = −Ψ−S2κΠ/k2. In flat
models β2 = Ω = 1 and

χ = −η̄/2 = −
[
Φ +

2

3

H−1Φ′ −Ψ

1 + w

]
.

For isocurvature modes the initial conditions are set for the corresponding non-zero mode (see later section). We
assume statistical isotropy, and the initial power spectrum for the primordial variable X (= χ for adiabatic) on
super-Hubble scales is defined so that

〈|X|2〉 =
∑
ν

ν

ν2 + 1
PX(ν).

Here Pχ gives the power in the 3-Ricci curvature by

〈|D̃aR̃
(3)|2〉 =

∑
ν

ν

ν2 − 1

16k6

S6

(
ν2 − 4

ν2 − 1

)2

Pχ(ν). (42)
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During inflation (no anisotropic stress, Π = 0)

χ = ψ +
H
φ′i
δφi = Ψ +

2

3
Ω−1H−1Ψ′ + Ψ

1 + w
.

where φi is is the inflaton field, and at the end of inflation χ = 3/2Ψ.
In terms of the Weyl tensor variable φ (defined in [11], differing by a sign from Φ in [17])

Φ = −φ− 1
2

S2

k2
κΠ Ψ = φ− 1

2

S2

k2
κΠ.

In the early radiation dominated era, assuming purely adiabatic perturbations,

χ =
1

2

4Rν + 15

Rν + 5
φ =

4Rν + 15

10
Ψ

where Rν = ρν/(ρν + ργ) (≈ 0.4). CMBFAST used to set the initial condition Ψ = −1, where Ψ is the metric
perturbation ψ as defined in [18] in the conformal Newtonian gauge. In CAMB we set χ = −1, same as the new
CMBFAST default, so that the CAMB transfer functions are related to those of the old CMBFAST (in flat models)
by (4Rν + 15)/10.

IX. REGULAR INITIAL CONDITION SERIES SOLUTIONS

Following1 [20] we define ω ≡ ΩmH0/
√

ΩR, where ΩR = Ωγ + Ων . The Friedmann equation gives

S =
ΩmH

2
0

ω2

(
ωτ +

1

4
ω2τ2 − 1

6
Kωτ3 − 1

48
Kω2τ4 +O(τ5)

)
.

Taking the lowest order in the tight coupling approximation we have the drag term

SneσT (4/3vb − qγ) = − ρb
3ρb + 4ργ

(k∆γ + 4Hvb).

Higher orders corrections in 1/(neσT ) are neglected (and hence πγ and higher moments are zero, vb = 3qγ/4), and
also assume c2s = pb = 0. We define Rν = Ων/ΩR, Rγ = Ωγ/ΩR, Rb = Ωb/Ωm, Rc = Ωc/Ωm. The adiabatic mode (in
the CDM frame — remember χ is defined in terms of η in the comoving frame, η̄ = η +O(k2τ2)) is, for χ0 = −1,

η = 2β2

(
1− (kτ)2

12

[
β2 −

10

4Rν + 15

])
(43)

∆γ = ∆ν =
β2

3
(kτ)2 − β2

15
ωk2τ3 (44)

∆c = ∆b =
β2

4
(kτ)2 − β2

20
ωk2τ3 (45)

qγ =
4

3
vb =

β2(kτ)3

27
(46)

qν =
β2(kτ)3

27

4Rν + 23

4Rν + 15
(47)

πν = −4

3

(kτ)2

4Rν + 15
− ωk2τ3

3

4Rν − 5

(4Rν + 15)(2Rν + 15)
(48)

G3 = − 4

21

(kτ)3

4Rν + 15
(49)

1 The only difference here is that we give results for additional variables, and define the isocurvature modes following [19].
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Further quantities not needed in the code are

χ = −1 +
(kτ)2

12

(
β2 +

4Rν − 5

4Rν + 15

)
(50)

Ψ =
−10

4Rν + 15
− 25ωτ

8

(8Rν − 3)

(4Rν + 15)(2Rν + 15)
(51)

κS2Π

2k2
=

−2Rv
4Rν + 15

+
35

2

ωτRν
(2Rν + 15)(4Rν + 15)

(52)

σ =
−5kτ

4Rν + 15
− 15ωkτ2

8

4Rν − 5

(4Rν + 15)(2Rν + 15)
(53)

Z =
3h′

k
= −β2

2
kτ +

3β2

20
ωkτ2. (54)

Note that η and hence χ are constant to linear order, whereas the potential is only constant at zeroth order due to
the matter changing the background equation of state.

CDM isocurvature mode:

η =
β2

3
Rcωτ −

β2

8
Rc(ωτ)2 (55)

∆c = 1− 1

2
Rcωτ +

3

16
Rc(ωτ)2 (56)

∆b = −1

2
Rcωτ +

3

16
Rc(ωτ)2 (57)

∆γ = ∆ν = −2

3
Rcωτ +

1

4
Rc(ωτ)2 (58)

qγ = qν +O(τ3) = −1

9
Rcωkτ

2 (59)

πν = −1

3

Rcωk
2τ3

2Rν + 15
(60)

Φ =
1

8

Rc(4Rν + 15)ωτ

(2Rν + 15)
(61)

σ =
1

24

Rc(4Rν − 15)ωkτ2

2Rν + 15
(62)

There is a solution Rc∆c = −Rb∆b with everything else zero, since in this case there is no density perturbation and
hence the dynamics is that of the background. The baryon isocurvature mode is given by subtracting (∆c = 1,∆b =
−Rc/Rb) from the above mode, and is equivalent as far as the CMB is concerned so that Cl(CDMiso,∆c0 = 1) =
R2
c/R

2
bCl(baryoniso,∆b0 = 1). The CDM isocurvature mode has a particularly simple form using the gauge invariant

variables ∆η=0
i (the perturbation in the frame in which η = 0, see later), with ∆η=0

c = 1, ∆η=0
γ,b,ν = 0 to the above

order.
We choose the neutrino isocurvature modes to have zero initial perturbation to the 3-Ricci scalar — a fairly natural

definition of ‘isocurvature’. This implies that the density perturbation in the comoving frame (proportional to Φ) is
non-zero, which makes an alternative definition of isocurvature, in which the result is a sum of the mode below and
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the adiabatic mode. Neutrino isocurvature density mode:

∆γ = −Rν
Rγ

+
Rν
6Rγ

(kτ)2 (63)

∆ν = 1− (kτ)2

6
(64)

∆c = −ωk
2τ3

80

RνRb
Rγ

(65)

∆b =
1

8

Rν(kτ)2

Rγ
(66)

qγ = − Rν
3Rγ

kτ +
ωkτ2

4

RνRb
R2
γ

(67)

qν =
kτ

3
− (kτ)3

54

(
1 +

12β2

4Rν + 15

)
(68)

πν =
(kτ)2

4Rν + 15
(69)

η =
β2(kτ)2

3

Rν
4Rν + 15

(70)

Φ = − Rν
4Rν + 15

− ωτ

4

Rν(2Rν − 15)

(4Rν + 15)(2Rν + 15)
(71)

The weird neutrino velocity isocurvature mode is

∆γ = kτ
Rν
Rγ
− 3ωkτ2

16

Rb(2 +Rγ)

R2
γ

(72)

∆ν = −kτ − 3ωkτ2Rb
16Rγ

(73)

∆c = −9ωkτ2

64

RνRb
Rγ

(74)

∆b =
3Rν
4Rγ

kτ − 9ωkτ2

64

Rb(2 +Rγ)

R2
γ

(75)

qγ = −Rν
Rγ

+
3RνRb

4R2
γ

ωτ +
(kτ)2

6

Rν
Rγ

+
3(ωτ)2

16

RνRb
R3
γ

(Rγ − 3Rb) (76)

qν = 1− (kτ)2

6

(
1 +

4β2

4Rν + 5

)
(77)

πν =
2kτ

(4Rν + 5)
+ ωkτ2 6

(4Rν + 5)(4Rν + 15)
(78)

G3 =
3

7

(kτ)2

4Rν + 5
(79)

η = 2β2kτ
Rν

4Rν + 5
+ ωkτ2 3β2Rν

32

(
Rb
Rγ
− 80

(4Rν + 5)(4Rν + 15)

)
(80)

Φ = Ψ +O(1) = − 3Rν
4Rν + 5

(kτ)−1 (81)

φ =
45

4

Rνω

k(4Rν + 15)(4Rν + 5)
(82)

σ = −3
Rν

4Rν + 5
+ 2φkτ (83)

Note that the variables Φ and Ψ are singular. However these are only natural variables in the zero shear frame (the
curvature and acceleration respectively), whereas φ is frame invariant and is regular. The results above generalize
those of [19] for non-flat models (note that the adiabatic anisotropic stress term in [19] is wrong, as is the neutrino
octopole in the neutrino velocity mode).
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The quintessence field ψ is strongly damped by the high expansion rate in the early universe, and thus rapidly
obtains very small velocity. Choosing the origin of the field ψ(0) = 0 we have ψ(τ) = −H2

0 ΩRV,ψτ
4/20 + O(τ5),

wψ = −1 + H2
0 ΩRV

2
,ψτ

4/(25V ), and the above modes are unchanged on adding a quintessence field. There is an
additional quintessence isocurvature mode with

V =
V

V,ψ

(
1− (kτ)2

6
+
ωk2τ3

72

)
(84)

∆ψ = 1− (kτ)2

10
(85)

and the other perturbations zero to this order. Note that fixing w = const is inconsistent with these assumptions.
However in the early universe the evolution is independent of the potential, so using the above initial conditions with
w = const is potentially not a bad approximation for various classes of quintessence models which start with w ∼ −1,
then evolve to have an effective constant w = weff .

The regular vector mode solution is given in Ref. [21] and the mode with magnetic fields in Ref. [9].

Frame invariant series

The isocurvature modes take a particularly simple form in the frame of identically vanishing curvature, in other
words using the frame invariant variables ∆̂i = ∆i + 3

2β2
(1 + wi)η, e.g. CDM isocurvature:

∆̂c = 1− 1

72

Rc(4Rν − 15)ωk2τ3

2Rν + 15
(86)

∆̂γ = ∆̂ν =
5

6

Rcωk
2τ3

2(Rν + 15)
(87)

∆̂b =
5

8

Rcωk
2τ3

2(Rν + 15)
(88)

vb + σ = −15

8

Rcωkτ
2

2Rν + 15
(89)

vc + σ =
1

24

Rc(4Rν − 15)ωkτ2

2Rν + 15
(90)

qν +
4

3
σ = −5

2

Rcωkτ
2

2Rν + 15
(91)

Ψ =
1

8

Rc(4Rν − 15)ωτ

2Rν + 15
(92)

(equal signs at this order only), consistent with comments below about conservation of the density perturbations in
the zero curvature frame. See also Ref. [22].

X. MATTER POWER SPECTRUM

σ8 is defined by

σ2
8 =
〈|
∫
dV3∆(x)|2〉
|
∫
dV3|2

where ∆ is the fractional total matter density perturbation (frame irrelevant at late times), and the integral is over a
8h−1Mpc sphere. In spherical polar harmonics we have

∆ =
∑
lm

∫
d ln k∆klmYlmjl(kr),
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then, since Y00 = 1/
√

4π, ∫
dV3∆(x)∫
dV3

=
3

4πr3

∫
d ln k

∫ r

0

dr4πr2∆k00
j0(kr)√

4π

=
3√
4π

kr cos kr − sin kr

k3r3
∆k00

where r = 8h−1Mpc. Now by assumed statistical isotropy

〈∆2(x)〉 = 〈∆2(0)〉 =
1

4π

∫
d ln k

∫
d ln k′〈∆k00∆k′00〉 =

∫
d ln kP∆

It follows that

〈∆klm∆k′l′m′〉 = 4πkδll′δmm′δ(k − k′)P∆(k)

and hence

σ2
8 =

∫
d ln k

[
3
kr cos kr − sin kr

k3r3

]2

T 2
∆Pχ

where T∆ is the transfer function.
We define the matter power spectrum so that

〈∆2(x)〉 =
1

(2π)3

∫
d3kPk =

∫
d ln k

(
k3Pk
2π2

)
and is usually expressed in units of h−1Mpc. Therefore

Pk =
2π2Pχ
k3

T 2
∆.

For COBE-normalized runs this can be compared with the output from CMBFAST using

Pk = 8π3h3k(TF )2d2norm

where TF is the quantity in the transfer function output file, and k is just k (the first column of the output file is
k/h).

XI. SUB-HORIZON OSCILLATORY EVOLUTION

To compute the matter transfer functions at late time on small scales many oscillations of the photon and neutrino
multipoles have to be integrated. The integration is in fact very inaccurate except on high accuracy settings because
of the low-l truncation of the multipole equations. The effect after matter domination is rather small so this is a waste
of time. However even though the oscillations are inaccurate, the mean values are non-zero (and about correct), so for
accurate results it is important to capture the non-oscillatory behaviour of the velocities when the radiation density
fraction is not entirely negligible.

Furthermore, the neutrinos only affect observables via the first few moments of their distribution, so we do not
directly need l > 2. Integrating the hierarchy is therefore not required as long as the lowest multipoles can be
calculated accurately enough. An approximate scheme can therefore save time even before matter domination, though
in radiation domination the oscillations need to be tracked.

As from June 2011, CAMB adopts essentially the scheme of [23], which is a significant improvement on previous
schemes that only applied in strict matter domination. I summarize the argument here in CAMB’s notation, with
(trivial) generalization to a non-flat universe.

The neutrinos have the synchronous-gauge scalar-mode Boltzmann hierarchy

J ′l =
k

2l + 1
[lJl−1 − βl+1(l + 1)Jl+1] +

8

15
kσδl2 −

4

3
kZδl0,

where as before h′s = 6h′ = 2kZ, i.e. Z = h′s/2k where hs is the synchronous gauge quantity. In CAMB’s conventions
J0 = ∆ν , J1 = qν , J2 = πν , and all variables are dimensionless. In the absence of sources the hierarchy is solved
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by (ultra)spherical Bessel functions, Φql (in the conventions of Antony’s thesis so they are indeed a solution to the
hierarchy normalized this way). When kτ � 1, there is a separation of scales between the sources for the hierarchy
(l ≤ 2), and l ∼ kτ . Ref [23] suggest using this to generate an approximate scheme for the evolution of the lowest
multipoles when kτ � 1. Mathematically we look for a series solution

Jl = AΦql +
∑
i

fqi (τ)/(kτ)i.

(in general higher derivatives of Φql can also be added, e.g. for velocity sources). Denoting order in 1/(kτ) with a
superscript, this leads to solutions to first order

∆ν = AΦq0 + ∆(1) + . . .

qν = AΦq1 −
4

3
Z + . . .

πν = AΦq2 +
1

2β2

(
4Z ′/k + ∆(1)

)
+ . . .

J3 = AΦq3 + . . . .

(there is some choice in defining orders, but the result below is the same). Using the recursion relations for the Bessel
functions this can be rearranged to give an equation for π′ν :

π′ν = k

(
qν +

4

3
Z
)
− 3 cotK πν = −∆′ν − 3 cotK πν .

Here cotK = 1/τ in a flat model, otherwise the usual appropriate trigonometric generalization. The leading solution is
independent of the unknown function ∆(1) at this order, a property that does not hold at higher order. This equation
can be used for high kτ , requiring only three equations to be evolved; it can be more accurate than a non-approximate
in the regime in which kτ > lmax where reflections from lmax give numerical errors in the full solution, though it is
not accurate in dark energy domination. It is used for sub-horizon massless neutrinos until after recombination, in
which case the oscillations don’t need to be integrated at all as follows.

The density multipoles obey the exact equation

∆′′ν =
k2

3
(2β2πν −∆ν)− 4

3
kZ ′.

If we neglect πν this gives the non-oscillatory part of the solution

∆ν ∼ −4
Z ′

k
.

Since Z ′ = −HZ−κδρtot/(2k) this is easy to compute without any evolution of neutrino multipoles. The solution for
the heat flux is read off from before as qν ∼ −4/3Z. A similar argument applies for the photons (when the multipoles
are not needed for reionization scattering) giving

∆γ ∼ −4
Z ′

k
− 4

Sneστ
k

(vb + Z)

where the opacity correction ensures the mean evolution is tracked correctly during reionization. We take qγ = qν as
scattering corrections appear to be negligible.

XII. MASSIVE NEUTRINO EVOLUTION

This is described in the appendix of Ref. [24], and reproduced here. Massive neutrinos have scalar mode perturba-
tions with comoving momentum q that evolve with

F ′l +
kv

2l + 1
[(l + 1)βl+1Fl+1 − lFl−1] +

[
δ2l

2

15
kσ − δ0lh′

]
d lnF

d ln q
= 0
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where the time-dependent velocity is v ≡ q/ε and ε is the comoving energy. For convenience we evolve νl ≡
−4Fl/(

d lnF
d ln q ), i.e.

ν′l =
kv

2l + 1
[lνl−1 − βl+1(l + 1)νl+1] +

8

15
kσδl2 −

4

3
kZδl0.

Conveniently when the neutrino is relativistic so v = 1 this is identical to the massless neutrino equation (νL = Jl),
and νl is independent of q: the only difference with massive neutrinos is that they travel at a different (time dependent)
speed once the mass becomes important. The hierarchies are truncated at lmax using

ν′l = kvνl−1 − (l + 1) cotK νl.

Evolution is started when neutrinos are highly relativistic. To get the leading correction we can write

νl = Jl +
m2

2q2
∆Jl

and use the series expansion v ≈ 1− a2m2/(2q2) so that

∆J ′l =
k

2l + 1
[l∆Jl−1 − βl+1(l + 1)∆Jl+1]− ka2

2l + 1
[lJl−1 − βl+1(l + 1)Jl+1] .

This lets us calculate the evolution of any q momentum mode while that mode has |am/q| � 1, which for light
neutrinos and larger q can be a while: only one additional hierarchy has to be evolved (that for ∆Jl) until modes
start to become significantly non-relativistic, at which point the full mode equation must be integrated for a sample of
momenta. The time saving from this approximation is not large in itself, but it does allow lower lmax to be used when
switching to integrating the momentum modes separately - without it the momentum modes need to be integrated
from the beginning with roughly the same lmax as the massless neutrinos. It also makes clear the leading q dependence
of the perturbed distribution that we use below.

To choose the momenta for direct mode integration, we note that we need integrals of the form

1

4

∫ ∞
0

dq
q4eq

(1 + eq)2
vwνl

in order to calculate the density, heat flux, and other perturbations. In the perturbatively relativistic regime, so that
we can do an expansion in a2m2/(2q2) as before, the integrals are sums of terms involving integrals of the form∫ ∞

0

dq
q4eq

(1 + eq)2
qn.

At late times we also expect v ∼ q, also giving terms roughly of this form, though the distribution has evolved away
from anything simple. We do not attempt to integrate the distribution accurately in the intermediate sub-hubble
regime where there can be oscillations in q: ignoring these seems to be harmless at required precision, presumably
because averaged over time or k they are smoothed out. So the idea is to chose a sampling in q so that integrals with
n = −4,−2..2 are evaluated exactly, which gives a set of constraint equations for the points and weights that can be
solved, and if more points are desired the solution can be made unique by adding other constraints or making a choice
of a few points (e.g. at high q would expect Gauss-Laguerre point sampling to be nearly optimal [25]). For 3 points
we find2 the remarkably sparse sampling q = (0.913201, 3.37517, 7.79184) produces results accurate at the 2 × 10−4

level with

1

4

∫ ∞
0

dq
q4eq

(1 + eq)2
vwνl ≈

∑
i

Kiv
wνl

and kernel weights K = (0.0687359, 3.31435, 2.29911). A four-point sampling is accurate at the < ×10−4 level,
e.g. with q = (0.7, 2.62814, 5.90428, 12), K = (0.0200251, 1.84539, 3.52736, 0.289427). For kτ � 1 (as for massless
neutrinos), and once significantly non-relativistic, lmax can be reduced down to 2 or 3.

Once the neutrinos become very non-relativistic we can evolve velocity-integrated equations (i.e. a truncated fluid
hierarchy); this is described in detail in Ref. [8] [specifically see the Appendix for the scalar modes].

2 Mathematica: http://camb.info/maple/NeutrinoIntegrationKernels.nb

http://camb.info/maple/NeutrinoIntegrationKernels.nb
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XIII. LENSING

The CMB lensing method is described in Ref. [26] (for a better and simpler derivation see [27]). The correlation
integral is evaluated over a truncated range with apodization for speed. Tails of the unlensed spectra are filled in
from a template where their contributions to the result are small, and hence parameter dependence is very weak.
Note that you need to turn on non-linear lensing to get the large-scale lensed BB spectrum accurately, and also large
k eta max scalar.

Limber approximation and lensing

This can be useful for calculating the lensing potential power spectrum accurately on small scales (it is not used
on large scales). For introduction to lensing and the Limber approximation in the notation here see [27]. The flat
universe full linear theory result for the lensing power spectrum is

Cψl = 4π

∫
dk

k
PR(k)

[∫ χ∗

0

dχSψ(k; η0 − χ)jl(kχ)

]2

, (93)

where the lensing source is given in terms of the transfer function for the Weyl potential by

Sψ(k; η0 − χ) = 2TΨ(k; η0 − χ)

(
χ∗ − χ
χ∗χ

)
(94)

for χ < χ∗ and zero otherwise. Note that in matter domination the potentials are nearly constant, so TΨ(k; η0−χ) is
nearly constant. In this approximation, and making the approximation that the integral goes to infinity, we can use∫ ∞

0

dχjl(kχ)

(
χ∗ − χ
χ∗χ

)
=

√
π

4

[
Γ[l/2]

Γ[(l + 3)/2]
− 2

kχ∗

Γ[(l + 1)/2]

Γ[(l + 2)/2]

]
. (95)

(can also use χ∗ limit, but result is a mess.) The potentials will of course change when dark energy becomes important,
though the scale of variation may be large compared to the Bessel function frequency on small scales. The Limber
approximation picks out k ∼ l/χ and the Bessel functions vary much faster than the source on small scales. Using∫

k2dk jl(kχ)jl(kχ
′) =

π

2χ2
δ(χ− χ′), (96)

we can Limber-approximate Cψl as

Cψl ≈
8π2

l3

∫ χ∗

0

χdχPΨ(l/χ; η0 − χ)

(
χ∗ − χ
χ∗χ

)2

. (97)

Rather than using this result directly it is convenient to write the integral in a form closer to the full result, approxi-
mating ∫ χ∗

0

dχSψ(k; η0 − χ)jl(kχ) ≈ Sψ(k; η0 − χs)
∫ χ∗

0

dχ jl(kχ) (98)

where χs = l/k. Using the result∫ ∞
0

dχjl(kχ) =

√
π

2k

Γ ([l + 1]/2)

Γ ([l + 2]/2)
∼
√
π

2l

1

k

(
1 +O

(
1

l

))
(99)

we have the large l flat universe approximation

Cψl ≈ 4π

∫
dk

k
PR(k)

[√
π

2l

1

k
Sψ(k; η0 − χs)

]2

, (100)

consistent with the previous results. For the non-flat case we have

Cψl ≈
8π2

l3

∫ χ∗

0

fK(χ)dχPΨ(l/fK(χ); η0 − χ)

(
fK(χ∗ − χ)

fK(χ∗)fK(χ)

)2

, (101)
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which we can compute similar to the flat case by using the small scale source term given approximately by√
π

2l

1

k

1

(1−Kl2/k2)1/4
Sψ(k; η0 − χs) (102)

where fK(χs) = l/k.
Accuracy is improved to higher order in the Limber results by using l→ l + 1/2, following Ref. [28].

XIV. NEUTRINO DAMPING ON TENSORS

It’s well known that the effect of neutrino anisotropic stress can be neglected when computing the large scale
temperature anisotropy. This is because the dominant large scale contribution (` < 150) comes from the anisotropy
generated by viewing an isotropic last scattering surface through gravitational waves along the line of sight. The
gravitational waves source photon anisotropies via their derivative H ′ ∼ σ. On super-horizon scales H ′ = 0 and
there is no contribution. On sub-horizon scales the waves decay, therefore the main contribution to the large scale
anisotropy comes from when the waves come inside the horizon and start to decay, but before they start oscillating at
which point they become small. After last scattering the evolution is matter dominated, so the neutrinos have almost
no contribution to the energy density and hence the effect of neutrino anisotropic stress is negligible. For this reason
CMBFAST, and by default CAMB, neglect the neutrinos as they slow down the computation.

For polarization things are different, as in this case the linear contribution to the anisotropy comes predominantly
from the photon anisotropic stress sourced by H ′. The large scale signal due to reionization is however insensitive
to neutrinos as this is during matter domination, thus the polarization signal with highest signal to noise is also
unaffected. On smaller scales the main contribution comes from the photon anisotropic stress at last scattering,
which is affected by H ′, itself a function of the damping due to neutrinos.

Ref. [29] has analysed the effect of neutrinos semi-analytically. In particular he finds a general semi-analytical result
for modes which enter the horizon deep in radiation domination. Since this is before last scattering, and once inside
the horizon the modes decay, this regime corresponds to the small oscillatory signal at high ` & 200. This is of little
consequence for observations, though the effect is a substantial 35% reduction in power.

The polarization power spectra peak at ` ∼ 100, corresponding to modes which have maximal velocity at the time
of last scattering. Therefore the most interesting region (apart from reionization) is on intermediate scales. Ref. [29]
also analyses the case of modes which enter the horizon after radiation domination, and claims a ∼ 10% damping of
the power by analysing the effect of neutrinos on H ′ at last scattering. This accounts for the damping of individual
modes and the phase difference relative to the fixed time of recombination.

See Figure. 2 for CAMB’s output. The large scale effect of ∼ 5% on ` < 100 is numerically smaller than that
in Ref. [29], and for l & 100 the neutrinos actually increase the power slightly. My understanding is this: A mode
which (without neutrinos) reaches maximal velocity at some time shortly after last scattering may be slowed by the
damping such that the velocity at the time of last scattering is higher than without the damping, even though the
overall amplitude of the mode is lower. Thus for modes on larger scales than the peak l <∼ 100 there should be a
damping effect, but for l & 100 there can be an increase in power at that `

(CAMB has always supported tensor neutrinos by a flag in equationsxxx.f90; as of Dec 2003 this can also be set
from the parameter input file)

XV. NOTES

The following are not strictly related to CAMB, but useful maybe to understand the equations (and Sψ the obvious
non-flat generalization).

A. Different Variables

As in my thesis I use total matter variables, e.g. q =
∑
i ρiqi, X =

∑
i ρi∆i. In the co-moving q = 0 (zero heat

flux, denoted by a bar) frame

X̄ = X + 3Hq/k σ̄ = σ +
q

ρ+ p
β2σ̄ = Z̄
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FIG. 2: The BB power spectrum with and without including the effect of neutrino damping (CAMB’s do tensor neutrinos
parameter)

are frame invariant, and hence

η̄ = η − 2β2Hq
k(ρ+ p)

.

Using the frame invariance of X̄

q̂ = q + kX/3H

where a hat denotes the X = 0 frame, and hence

η̂ = η +
2β2X

3(ρ+ p)
= H

(
η

H
− 2β2X

ρ̇

)
is also frame invariant, so η̂ = ηX=0 = 2β2

3(ρ+p)Xη=0. In terms of the flat metric variables as used by [30]

− 1
2 η̂ ∼ −ζ = Hξ ≡ H

(
ψ

H
+
δρ

ρ̇

)
and η ∼ −2ψ. Since X/ρ̇ transforms like Xi/ρ̇i the curvature perturbation in the frame Xi = 0 is the frame invariant
quantity

η − 2β2H
Xi
ρ̇i
.

The energy conservation equation gives

3ĥ′a(ρ+ p) = −3HX̂ pa − S2D̂aD̂
bq̂b.
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which implies that ĥa is constant on large scales where the derivatives can be neglected if the pressure perturbation
in the uniform energy density frame is zero, i.e. X̂ pa = (Dap)nad ≡ X pa − p′/ρ′Xa = 0. As emphasised by [30] this
follows purely from energy conservation, independently of the field equation (though in different theories the energy
that is conserved may include components from the different theory). Using the general result

η′ = −2β2

3
(kσ − 3h′)

we have

1

2β2
η̂′ = −Hδpnad

ρ+ p
− kσ̄

3
.

Hence on large scales η̂ is conserved if K = 0 and δpnad = 0. This applies equally well if the total densities are replaced
with those for an individual species as long as they do not interact. For adiabatic modes η̂ = η̄ + X̄ 2β2

3(ρ+p) ≈ η̄ on

large scales since X̄ is suppressed by a factor of k2. The total and individual results are related by

η̂ =

∑
i(ρi + pi)η̂i∑
i(ρi + pi)

.

Note that from the η′ equation above, in the gauge in which h′ = 0, η is conserved on large scales no matter what.
Is this a useful statement, or like saying that in the h′ = 0 gauge h is conserved !? Wands etc define this gauge by as
the zero number density perturbation gauge, which amounts to the same thing as if h′ = 0 the local volume element
does not change with time and can be chosen to be zero initially. See also Ref. [22].

Newtonian Gauge

The Newtonian gauge is the frame with zero shear: σ = 0. To construct Newtonian gauge quantities from those in
any other frame you just need to identify the gauge-invariant combinations that give what you want when the shear
vanishes. See the Change of Frame section later for help constructing frame invariant combinations. In particular the
Newtonian gauge velocity and density perturbations are given by

v
(i)
N = v(i) + σi ∆

(i)
N = ∆(i) − 3H(1 + w(i))σ/k

where w = p/ρ. e.g. ∆γ
N = ∆γ − 4Hσ/k. In general

Φ =
η

2β2
+
Hσ
k

and hence 2β2Φ = ηN is the curvature in the zero shear frame (Newtonian gauge). From the σ′ equation AN = −Ψ,
and the η′ relation η′N = 2β2h

′
N . A useful relation is(

∆i +
3(1 + wi)

2β2
η

)′
= −k(1 + wi)(vi + σ).

See also the appendix of Ref. [22] and http://cosmocoffee.info/viewtopic.php?t=212.

B. Change of frame

In the frame ũ = u+ v we have

q̃ = q − (ρ+ p)v

X̃ = X − ρ′v

k

η̃ = η − 2β2Hv
k

σ̃ = σ + v

Ã = A+
v′ +Hv

k

h̃′ = h′ +
kv

3
− (Hv)′

k
.

http://cosmocoffee.info/viewtopic.php?t=212
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In terms of the covariant tensors we have (not checked for non-flat)

η̃a = ηa − 2HDaD
bvb

h̃′a = h′a +
1

3
S2DaD

bvb − (Hva)′

δ̃ρa = δρa − ρ′va
σ̃ab = σab +D〈avb〉

(note notation mess: δρ ≡ X ) so e.g. a frame invariant curvature perturbation is

ηa − 2HDaD
bδρb
ρ′

. (103)

C. Exact covariant GR reference

Using the uau
a = 1 signature.

Energy conservation:

ρ̇+ (ρ+ p)θ +Daqa − 2Aaqa − πabσab = 0

q̇〈a〉 +
4

3
θqa + (ρ+ p)Aa −Dap+ qbσab + qb$ba +Dbπab −Abπab = 0

Raychaudhuri equation:

θ̇ +
1

3
θ2 +

κ

2
(ρ+ 3p)−DaAa +$ab$ba + σabσab +AaA

a = 0.

Gauss-Codazzi ($ab = 0 to define (3)R) implies:

(3)R = 2κρ− 2

3
θ2 + σabσ

ab.

Scale factor perturbation:

ḣa =
1

3
(Za − SθAa)− (σab +$ab)h

b − 2uaA
bhb.

Define ωa = 1
2 curlua, so curlωa = Db$ba. Others:

Db$ba −Dbσab +
2

3
Daθ + κqa − 2Ab$ba = 0

Daωa +Aaωa = 0

and the evolution equations

σ̇〈ab〉 +
2

3
θσab −D〈aAb〉 + Eab +

1

2
κπab + σ〈a

cσc〉b +A〈aAb〉 + ω〈aωb〉

ω̇〈a〉 +
2

3
θωa =

1

2
curlAa + ωbσab

Here 〈〉 on the LHS is needed to project some time derivatives orthogonal to ua.
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D. Action (e.g. closed instanton)

We perform a harmonic expansion of a quantity X in the form

X =
∑
klm

XklmQklm

where ∆Qklm = −k2Qk and we choose Qklm = Φνl (χ)Ylm where we normalize the hyper-spherical Bessel functions so
that Φν0(0) = 1 and k2 = K(ν2− 1) (for closed models: everywhere ν2− 1→ ν2 + 1 for open models). For flat models
Φνl (r) = jl(kr).

We expand a variable X in the form

X =
∑
k

XkQ
k

where k labels l,m and ν and ∆Qk = −k2Qk. Mode expansion in the action gives

S = 1
2

∫
dV4XLX =

N

2

∫
dτ
∑
k

XkLXk

where ∫
dV3Q

kQk
′

= Nδkk′

where δkk′ is defined by
∑
k δkk′Xk = Xk′ . Spatial derivatives in L are converted to ks. In a compact space the sum

over modes is of the form ∑
k

=
∑
νlm

Aν

where Aν is some arbitrary ν-dependent factor. The expectation value of the mode coefficients is therefore given by

〈|Xk(τ)|2〉 =
1

NAν
G(τ, τ)

where the Greens’ function is unambiguously determined by the real space operator and satisfies

LG(τ, τ ′) = δ(τ − τ ′).

The expectation value of each ν mode will be the same and

〈|X(x, τ)|2〉 =
K3/2

2π2

∑
k

G(τ, τ)/Aν =
∑
ν

ν

ν2 − 1
P(ν)

where

P(ν) ≡ K
3/2ν(ν2 − 1)

2π2
G(τ, τ)

is the power spectrum. The CMB power spectrum is given by

Cl =
1

16

1

2l + 1

∑
k

2NK3/2ν2

π
〈|Xk(τr)|2〉[T (l)

I (ν)]2

where T
(l)
I (ν) is the transfer function giving Il when Xk(τr) = 1 and r denotes the early radiation dominated era

when the mode is still well outside the horizon. This gives

Cl =
1

16

2

π

∑
ν

K3/2ν2G(τr, τr)[T
(l)
I (ν)]2 =

4π

16

∑
ν

ν

ν2 − 1
Pr(ν)[T

(l)
I (ν)]2.
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For the CMB Anthony uses Aν = K3/2ν2 and N = π/2 where Qk = Φνl (χ)Ylm and Φν0(0) = 1.
In the tensor case we have an action of the form

S =
1

8κ

∫
dV4h

abLhab

and write

hab =
∑
k

2HkQ
k
ab

where k labels ν,l,m and P , the parity. The power spectrum is given by

Ph(ν) ≡ 4

π2
K3/2ν(ν2 − 1)G(τ, τ)

where LG(τ, τ ′) = δ(τ−τ ′). Note the additional factor of two difference from the additional sum over the two parities.
The contribution to the CMB is

Cl =
1

16

(l + 1)(l + 2)

2l(l − 1)

1

2l + 1

∑
k

2NK3/2ν2

π

(ν2 − 3)

ν2
〈H2

k〉[T
(l)
I (ν)]2

where k labels positive parity modes only (Q̄Al
|0 = 0) giving the previous result.
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