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Observed CMB temperature power spectrum 

Observations 
Constrain theory of early universe 

+ evolution parameters and geometry 

WMAP 7 

Keisler et al, arXiv:1105.3182 

Larson et al, arXiv:1001.4635 



Beyond Gaussianity ï general possibilities 

ɡὰɡὰ ὰ ὰὅ  

 

- power spectrum encodes all the information 

- modes with different wavenumber are independent 

Gaussian + statistical isotropy  

Flat sky approximation:  ɡὼ Ὠ᷿ὰ ɡὰὩ ẗ   

Higher-point correlations 

Gaussian: can be written in terms of ὅ 

 

Non-Gaussian: non-zero connected ὲ-point functions 

ɡ Ὕ 



Flat sky approximation: 

If you know ɡὰȟɡὰ , sign of ὦ tells you which sign of ɡὰ  is more likely 

Bispectrum 
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Millennium simulation 



Near-equilateral to flattened: 
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Ὧ Ὧ Ὧ πȟ ὯḺὯȟὯ Local (squeezed) ὯḐ Ὧ 
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Squeezed bispectrum is a correlation of small-scale power with large-scale modes 

For more pretty pictures and trispectrum  see:  The Real Shape of Non-Gaussianities, arXiv:1107.5431 



Squeezed bispectrum  

 
óLinear-short legô approximation very accurate for large scales where cosmic variance is large 

Correlation of the modulation 

with the large-scale field 

Response of the small-scale power 

to changes in the modulation field 

(non perturbative) 

ὰḺὰ ὰ 

Example: local primordial non-Gaussianity 

ὰḺρππȡ modulation super-horizon and constant through last-scattering, ‒ ‒ᶻ 

Primordial curvature perturbation is modulated as  

with modulation field(s) ὢ 

Note: uses only the linear short leg approximation, otherwise non-perturbatively exact 



14 000 Mpc 

z~1000 
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Horizon size at 

recombination 

Even with █╝╛ , we observe CMB at last scattering modulated by other perturbations 



What is the modulating effect of large-scale super-horizon perturbations? 

Single-field inflation:  only one degree of freedom, e.g. everything 

determined by local temperature (density) on super-horizon scales 

Cannot locally observe super-horizon perturbations (to ὕ ) 

Observers in different places on LSS will see statistically exactly the same thing  

(at given fixed temperature/time from hot big bang) 

- local physics is identical in Hubble patches that differ only by super-horizon modes 



BUT: a distant observer will see modulations due to the large modes <~ horizon size today 
- can see and compare multiple different Hubble patches 

Å Super-horizon modes induce linear perturbations on all scales 

 

linear CMB anisotropies on large scales  (ὰ ρππ) 
 

Å Sub-horizon perturbations are observed in perturbed universe: 

-small-scale perturbations are modulated by the effect large-scale modes 

 

squeezed-shape non-Gaussianities 



Using the geodesic equation in the Conformal Newtonian Gauge:  

All photons redshift the same way, so ὯὝḐὉȢ  
 

Recombination fairly sharp at background time –z: ~ constant temperature surface. 

Also add Doppler effect: 

Linear CMB anisotropies 

Linear perturbation theory with  
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Sachs-Wolfe Doppler ISW Temperature  

perturbation at 

recombination 



Note: no scale on which Sachs-Wolfe ɮȾσ result is accurate 

Doppler  dominates at ὰḐφπ because other terms cancel 



Alternative 
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Gauge-invariant 3-curvature on constant temperature hypersurfaces; 

Redshifting from ὔ expansion of the beam makes the ὔ expansion from inflation observable 
(but line of sight integral is larger on large-scales: overdensity looks colder) 



Non-linear effect due to redshifting by large-scale modes? 

Large-scale linear anisotropies are due to the linear anisotropic redshifting of the 

otherwise uniform (zero-order) temperature last scattering surface 

Also non-linear effect due to the linear anisotropic redshifting of the 

linear last scattering surface 

ɝὝ ᴼ ρ ɝὝ ɝὝ   
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Reduced bispectrum 

Large-scale 

power spectrum 
Small-scale (non-perturbative) 

power spectrum 

(Actually very small, so not very important) 



Linear effects of large-scale modes 

 

- Redshifting as photons travel through perturbed universe 

 

- Transverse directions also affected: 

perturbations at last scattering are distorted as well as anisotropically redshifted 
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Jabobi map relates observed angle to physical separation of pair of rays 

Physical separation 

vector orthogonal to ray 

Angular separation seen 

by observer at ὃ Jacobi map 

Optical tidal matrix depends on the Riemann tensor: 

(Ὧ  is wave vector along ray, Ὁ  projects into ray-orthogonal basis) 

Evolution of Jacobi map: 

ὃ 
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óRiemann = Weyl + Ricciô 

Non-local part (does not depend on local density): 

 - e.g. determined by Weyl (Newtonian) potential ɮ ɰ  

  

differential deflection of light rays ᵼ   
convergence and shear of beam 

 

- (Weyl) lensing 

Einstein equations relate Ricci to 

stress-energy tensor: depends on local 

density 

 

ᵼ  ray area changes due to expansion of 

spacetime as the light propagates 

 

- Ricci focussing 

FRW background universe has Weyl=0, Ricci gives standard angular diameter distance 

At radial distance …z, trace of Jacobi map determines physical areas: 

(can be modelled as transverse deflection angle) (cannot be modelled by deflection angle) 



Beam propagation in a perturbed universe, e.g. Conformal Newtonian Gauge 

Trace-free part of Jacobi map depends on the shear: 

Area of beam determined by trace of Jacobi map: 

– –z  –

Ricci focussing (Weyl) convergence 

Local aberration Radial displacement 

(small, …Ḻ…z) 

CMB is constant temperature surface: 



Ὀ

ς
…zὥz ρ ‒ ‖ 

Overdensity (‒ larger) 
underdensity 

Ricci focussing: 

beam contracts more leaving LSS 

ᵼ same physical size looks smaller 

(Weyl lensing effect not shown and partly cancels area effect) 



Gauge-invariant Ricci focussing 



Observable CMB bispectrum from single-field inflation 
 

Linear-short leg approximation for nearly-squeezed shapes: 

Weyl lensing bispectrum 

+ perms 

Squeezed limit (ὰḺὰ 

Ricci focussing bispectrum 

+ anisotropic redshifting bispectrum (from before) 

Where ὢ here is Ὕ, ‖ and ‒, with  …zὥz ρ ‒ ‖. For super-horizon adiabatic modes ‒ ‒. 

Squeezed limit (ὰḺὰ 



Overdensity: magnification correlated with positive Integrated Sachs-Wolfe (net blueshift) 

Underdensity: demagnification correlated with negative Integrated Sachs-Wolfe (net redshift) 

ὅ : Correlation between lenses and CMB temperature? 

Weyl lensing bispectrum 


