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Observed CMB temperature power spectrum 

Observations 
Constrain theory of early universe 

+ evolution parameters and geometry 

WMAP 7 

Keisler et al, arXiv:1105.3182 

Larson et al, arXiv:1001.4635 



Beyond Gaussianity – general possibilities 

Θ 𝑙1 Θ 𝑙2 = 𝛿 𝑙1 + 𝑙2 𝐶𝑙  
 

- power spectrum encodes all the information 

- modes with different wavenumber are independent 

Gaussian + statistical isotropy  

Flat sky approximation:  Θ 𝑥 =
1

2𝜋
∫ 𝑑2𝑙 Θ(𝑙)𝑒𝑖𝑥⋅ 𝑙  

Higher-point correlations 

Gaussian: can be written in terms of 𝐶𝑙 
 

Non-Gaussian: non-zero connected 𝑛-point functions 

(Θ = 𝑇) 



Flat sky approximation: 

If you know Θ 𝑙1 , Θ 𝑙2 , sign of 𝑏𝑙1𝑙2𝑙3tells you which sign of Θ 𝑙3  is more likely 

Bispectrum 

Trispectrum 

〈Θ 𝑙1 Θ 𝑙2 Θ(𝑙3)〉 = 
1

2𝜋
𝛿 𝑙1 + 𝑙2 + 𝑙3 𝑏𝑙1𝑙2𝑙3 
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N-spectra… 

𝒍𝟏 + 𝒍𝟐 + 𝒍𝟑 = 𝟎 



+ 

+ 

+ 

𝑘1 + 𝑘2 + 𝑘3 = 0, 𝑘1 = 𝑘2 = |𝑘3| Equilateral 
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Millennium simulation 



Near-equilateral to flattened: 

b<0 b>0 

𝑘2 

𝑘3 
𝑘1 



𝑘1 + 𝑘2 + 𝑘3 = 0, 𝑘1 ≪ 𝑘2, 𝑘3 Local (squeezed) 𝑘2 ∼ −𝑘3 

𝑘1 𝑘2 

𝑘3 

T(𝑘2) 𝑇(𝑘1) 

−𝑇(𝑘3) 

= + 

+ 

+ 

b>0 

b<0 

𝑇(𝑘3) 

Squeezed bispectrum is a correlation of small-scale power with large-scale modes 

For more pretty pictures and trispectrum  see:  The Real Shape of Non-Gaussianities, arXiv:1107.5431 



Squeezed bispectrum  

 
‘Linear-short leg’ approximation very accurate for large scales where cosmic variance is large 

Correlation of the modulation 

with the large-scale field 

Response of the small-scale power 

to changes in the modulation field 

(non perturbative) 

𝑙1 ≪ 𝑙2 ≤ 𝑙3 

Example: local primordial non-Gaussianity 

𝑙1 ≪ 100: modulation super-horizon and constant through last-scattering, 𝜁𝑔 = 𝜁0
∗ 

Primordial curvature perturbation is modulated as  

with modulation field(s) 𝑋𝑖 

Note: uses only the linear short leg approximation, otherwise non-perturbatively exact 



14 000 Mpc 

z~1000 

z=0 
θ 

Horizon size at 

recombination 

Even with 𝒇𝑵𝑳 = 𝟎, we observe CMB at last scattering modulated by other perturbations 



What is the modulating effect of large-scale super-horizon perturbations? 

Single-field inflation:  only one degree of freedom, e.g. everything 

determined by local temperature (density) on super-horizon scales 

Cannot locally observe super-horizon perturbations (to 𝑂(
𝑘2

𝐻2)) 

Observers in different places on LSS will see statistically exactly the same thing  

(at given fixed temperature/time from hot big bang) 

- local physics is identical in Hubble patches that differ only by super-horizon modes 



BUT: a distant observer will see modulations due to the large modes <~ horizon size today 
- can see and compare multiple different Hubble patches 

• Super-horizon modes induce linear perturbations on all scales 

 

linear CMB anisotropies on large scales  (𝑙 < 100) 

 

• Sub-horizon perturbations are observed in perturbed universe: 

-small-scale perturbations are modulated by the effect large-scale modes 

 

squeezed-shape non-Gaussianities 



Using the geodesic equation in the Conformal Newtonian Gauge:  

All photons redshift the same way, so 𝑘𝑇 ∼ 𝐸.  
 

Recombination fairly sharp at background time 𝜂∗: ~ constant temperature surface. 

Also add Doppler effect: 

Linear CMB anisotropies 

Linear perturbation theory with  



⇒ 

Sachs-Wolfe Doppler ISW Temperature  

perturbation at 

recombination 



Note: no scale on which Sachs-Wolfe Φ/3 result is accurate 

Doppler  dominates at 𝑙 ∼ 60 because other terms cancel 



Alternative 
𝑑Φ =

𝜕Φ

𝜕𝜂
 𝑑𝜂 +

𝜕Φ

𝜕𝜒
 𝑑𝜒 

𝑑𝜂 

𝜒 

𝐴  

𝜂∗ 

𝐧  

Gauge-invariant 3-curvature on constant temperature hypersurfaces; 

Redshifting from 𝛿𝑁 expansion of the beam makes the 𝛿𝑁 expansion from inflation observable 
(but line of sight integral is larger on large-scales: overdensity looks colder) 



Non-linear effect due to redshifting by large-scale modes? 

Large-scale linear anisotropies are due to the linear anisotropic redshifting of the 

otherwise uniform (zero-order) temperature last scattering surface 

Also non-linear effect due to the linear anisotropic redshifting of the 

linear last scattering surface 

Δ𝑇small → 1 + Δ𝑇large Δ𝑇small  

𝑇 → 1 + Δ𝑇 𝑇 

Reduced bispectrum 

Large-scale 

power spectrum 
Small-scale (non-perturbative) 

power spectrum 

(Actually very small, so not very important) 



Linear effects of large-scale modes 

 

- Redshifting as photons travel through perturbed universe 

 

- Transverse directions also affected: 

perturbations at last scattering are distorted as well as anisotropically redshifted 

 



𝜆 

𝛿𝜃𝐽 

𝜁𝐼 

Jabobi map relates observed angle to physical separation of pair of rays 

Physical separation 

vector orthogonal to ray 

Angular separation seen 

by observer at 𝐴 Jacobi map 

Optical tidal matrix depends on the Riemann tensor: 

(𝑘𝑎 is wave vector along ray, 𝐸𝐼
𝑎 projects into ray-orthogonal basis) 

Evolution of Jacobi map: 

𝐴 

http://images.google.com/imgres?imgurl=http://www.olegvolk.net/olegv/newsite/samos/eye.jpg&imgrefurl=http://www.olegvolk.net/olegv/newsite/samos/samos.html&h=542&w=800&sz=67&tbnid=-Fj6h3BoFeoJ:&tbnh=96&tbnw=142&start=40&prev=/images?q=eye&start=20&svnum=100&hl=en&lr=&rls=GGLD,GGLD:2004-31,GGLD:en&sa=N


‘Riemann = Weyl + Ricci’ 

Non-local part (does not depend on local density): 

 - e.g. determined by Weyl (Newtonian) potential 
1

2
(Φ + Ψ) 

  

differential deflection of light rays ⇒   
convergence and shear of beam 

 

- (Weyl) lensing 

Einstein equations relate Ricci to 

stress-energy tensor: depends on local 

density 

 

⇒  ray area changes due to expansion of 

spacetime as the light propagates 

 

- Ricci focussing 

FRW background universe has Weyl=0, Ricci gives standard angular diameter distance 

At radial distance 𝜒∗, trace of Jacobi map determines physical areas: 

(can be modelled as transverse deflection angle) (cannot be modelled by deflection angle) 



Beam propagation in a perturbed universe, e.g. Conformal Newtonian Gauge 

Trace-free part of Jacobi map depends on the shear: 

Area of beam determined by trace of Jacobi map: 

𝜂 = 𝜂∗ + 𝛿𝜂 

Ricci focussing (Weyl) convergence 

Local aberration Radial displacement 

(small, 𝛿𝜒 ≪ 𝜒∗) 

CMB is constant temperature surface: 



𝐷

2
≈ 𝜒∗𝑎∗(1 + 𝜁𝛾  − 𝜅) 

Overdensity (𝜁 larger) 
underdensity 

Ricci focussing: 

beam contracts more leaving LSS 

⇒ same physical size looks smaller 

(Weyl lensing effect not shown and partly cancels area effect) 



Gauge-invariant Ricci focussing 



Observable CMB bispectrum from single-field inflation 
 

Linear-short leg approximation for nearly-squeezed shapes: 

Weyl lensing bispectrum 

+ perms 

Squeezed limit (𝑙1 ≪ 𝑙) 

Ricci focussing bispectrum 

+ anisotropic redshifting bispectrum (from before) 

Where 𝑋𝑖 here is 𝛿𝑇, 𝜅 and 𝜁𝛾, with  
𝐷

2
≈ 𝜒∗𝑎∗ 1 + 𝜁𝛾  − 𝜅 . For super-horizon adiabatic modes 𝜁𝛾 = 𝜁0. 

Squeezed limit (𝑙1 ≪ 𝑙) 



Overdensity: magnification correlated with positive Integrated Sachs-Wolfe (net blueshift) 

Underdensity: demagnification correlated with negative Integrated Sachs-Wolfe (net redshift) 

𝐶𝑙
𝑇𝜅: Correlation between lenses and CMB temperature? 

Weyl lensing bispectrum 
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+ 

Linear effects, 

All included in self-consistent 

linear calculation with CAMB 

Non-linear growth effect 

- estimate using e.g. Halofit 

Potentially important, 

but frequency dependent 

- ‘foregrounds’ 

𝐶𝑙
𝑇𝜅: Correlation between lenses and CMB temperature? 



Contributions to the lensing-CMB cross-correlation, 𝐶𝑙
𝑇𝜓

 

(note Rees-Sciama contribution is small, numerical problem with much larger result of Verde et al, Mangilli et al.;  

  see also Junk et al. 2012 who agree with me) 



Weyl lensing total + Ricci focussing (+ estimates of sub-horizon dynamics) 



Does this look like squeezed non-Gaussianity 𝑓𝑁𝐿 from multi-field inflation 

(local modulation of small scale perturbation amplitudes in each Hubble patch)? 

Dominated by lensing 𝑓𝑁𝐿 ∼ 6 − 10 

Ricci is an 𝑂(1) correction 

Calculation reliable for 𝑙1 < 60 where 

dynamical effects suppressed by small 
𝑘2

𝐻2 : do not need fully non-linear 

dynamical calculation of bispectrum a 

la Pitrou et al to make reliable 𝑓𝑁𝐿 

constraint 

 



Signal easily modelled 

Squeezed shape but different phase, angle and scale dependence 

𝑓𝑁𝐿 Lensing 

Lewis, Challinor, Hanson 1101.2234 



Note: ‘Maldacena’ bispectrum 

 

-  cannot measure comoving curvature perturbations on scales larger than the horizon directly 

- 𝑑/𝑑(ln 𝑘) and CMB transfer functions do not commute: cannot get correct result from primordial  𝑓𝑁𝐿 ∼ (𝑛𝑠 − 1) 

is not an observable 

Consistency relation: 𝑓𝑁𝐿 ∼ 𝑂(𝑛𝑠 − 1) 

Observable CMB analogue is Ricci focussing bispectrum 

- larger because of acoustic oscillations, non-zero for 𝑛𝑠 = 1 

- different shape to 𝑓𝑁𝐿 in CMB, but projects as 𝑓𝑁𝐿 = 𝑂(1) 

Question: primordial bispectrum calculations includes time shift 
𝑑

𝑑 ln 𝑘  
 terms 

- not correct to calculate effective 𝑓𝑁𝐿 at end of inflation, what to do? (e.g. features) 



Bispectrum slices are smoothed by lensing, just like power spectrum 

BUT lensing preserves total power:  expect ∼ 0 bias on primordial  𝑓𝑁𝐿 estimators 

Lensing of primordial non-Gaussianity 

General case at leading order: Hanson et al. arXiv:0905.4732 

Fast non-perturbative method: Pearson, Lewis, Regan arXiv:1201.1010  



Squeezed trispectrum 

• Lensing gives large trispectrum, this is what is used for lensing reconstruction 

 

• Also want to look for primordial trispectrum 

Lensing bias on 𝜏𝑁𝐿 

All 𝜏𝑁𝐿 signal at low 𝑙 < ~ 10: cut to avoid blue lensing signal at higher 𝑙 
 

Then fairly small, 17 to 40 depending on data: small compared to 𝜎𝜏𝑁𝐿 ≥ 150 

e.g. from primordial modulation 

Squeezed shape, constant modulation 

Easy accurate estimator for 𝜏𝑁𝐿 is 

Lensing not a problem for 𝜏𝑁𝐿 constraints (because they are so weak!) 

⇒  

(optimal to percent level) 



Conclusions 

• Single field inflation predicts significant non-Gaussianity in the observed CMB 

  

 - mostly due to (Weyl) lensing 

 - total projects onto 𝑓𝑁𝐿 ∼ 7 for Planck temperature 

 - Ricci focussing expansion of beam recovers the 𝛿𝑁 from inflation, 

    : gives equivalent of consistency relation, but larger 

    : small and not quite observable, projects on to 𝑓𝑁𝐿 ∼ 1 

 - Squeezed calculation reliable at 𝑙1 < 60 

   : robust constraints on 𝑓𝑁𝐿 without 2nd order dynamics 

 - effect on trispectrum is small 

  

 

• Lensing bispectrum signal important but distinctive shape 

 - dominated by late ISW correlation, but other term important (eg. early ISW) 

 - predicted accurately by linear theory (Rees-Sciama is tiny) 

 

 

• On smaller scales, and non-squeezed shapes, need full numerical calculation 

of non-linear dynamical effects in CMB 

 

 

 

Question: for numerical calculation of squeezed non-linear effects, how to you handle/separate the large lensing signal? 

(𝑓𝑁𝐿 ∼ 3 sounds like mostly lensing to me) 


