Primordial squeezed non-Gaussianity and
observables in the CMB
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CMB temperature

End of inflation Last scattering surface

- gravity+
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Perturbations super-horizon Sub-horizon acoustic oscillations
+ modes that are still super-horizon
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Observed CMB temperature power spectrum
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Constrain theory of early universe
+ evolution parameters and geometry



Beyond Gaussianity — general possibilities
Flat sky approximation: 0(x) = %f d?le()e™ !

Gaussian + statistical isotropy
(0(1)6(l,)) =6, + 1,)C

- power spectrum encodes all the information
- modes with different wavenumber are independent

Higher-point correlations

Gaussian: can be written in terms of C;

Non-Gaussian: non-zero connected n-point functions
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Bispectrum
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Flat sky approximation: (0(11)0(l,)0(l3)) = %(5@1 + 1, + 13)by,

lyl3

If you know ©(l,), ©(l,), sign of b, ;,;,tells you which sign of ©(l;) is more likely

L3

Trispectrum
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N-spectra...
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Millennium simulation



Near-equilateral to flattened:




Local (squeezed) k;i+k; + ks =0, ky <kz ks ky,~—kg
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Squeezed bispectrum is a correlation of small-scale power with large-scale modes

For more pretty pictures and trispectrum see: The Real Shape of Non-Gaussianities, arXiv:1107.5431

b>0

b<0



Squeezed bispectrum

‘Linear-short leg’ approximation very accurate for large scales where cosmic variance is large

l; « I, <13 Wwith modulation field(s) X;
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Correlation of the modulation Response of the small-scale power
with the large-scale field to changes in the modulation field
(non perturbative)

Note: uses only the linear short leg approximation, otherwise non-perturbatively exact

Example: local primordial non-Gaussianity

Primordial curvature perturbation is modulated as ¢ = [1 + (3/nL/5)(]¢,

l; <« 100: modulation super-horizon and constant through last-scattering, {; = {3

6 Tesr = =
biyials = EfI‘(LChf:'] (Cr, +Cly)



Even with fy; = 0, we observe CMB at last scattering modulated by other perturbations

Horizon size at
recombination




What is the modulating effect of large-scale super-horizon perturbations?

Single-field inflation: only one degree of freedom, e.g. everything
determined by local temperature (density) on super-horizon scales

2
Cannot locally observe super-horizon perturbations (to 0(%))

O

Observers in different places on LSS will see statistically exactly the same thing
(at given fixed temperature/time from hot big bang)
- local physics is identical in Hubble patches that differ only by super-horizon modes



BUT: a distant observer will see modulations due to the large modes <~ horizon size today
- can see and compare multiple different Hubble patches

« Super-horizon modes induce linear perturbations on all scales

linear CMB anisotropies on large scales (I < 100)

» Sub-horizon perturbations are observed in perturbed universe:
-small-scale perturbations are modulated by the effect large-scale modes

squeezed-shape non-Gaussianities



Linear CMB anisotropies

Linear perturbation theory with ds® = a(n)® [(1 +2¥)dn* — (1 — 2®)dx"]

Using the geodesic equation in the Conformal Newtonian Gauge:

1o
E(ng) = a(n)E(n) [1+‘11(I;) lIJng/ d;';(lIJ"jL(I?*")]
n

All photons redshift the same way, so kT ~ E.

Recombination fairly sharp at background time n,: ~ constant temperature surface.
Also add Doppler effect:

Mo
T(n,n) = (a.+ da)T. {1 +¥(n.) —Ppo+n-(vo—V)+ f dn(¥’ + {I)’)]
s
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Temperature Sachs-Wolfe ~ Doppler ISW

perturbation at
recombination
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Note: no scale on which Sachs-Wolfe ®/3 result is accurate
Doppler dominates at [ ~ 60 because other terms cancel



Alternative an I — o0d n + 0P g
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T <17
Gauge-invariant 3-curvature on constant temperature hypersurfaces;

Redshifting from §N expansion of the beam makes the N expansion from inflation observable
(but line of sight integral is larger on large-scales: overdensity looks colder)



Non-linear effect due to redshifting by large-scale modes?

Large-scale linear anisotropies are due to the linear anisotropic redshifting of the
otherwise uniform (zero-order) temperature last scattering surface

T - (1 + AT)T

Also non-linear effect due to the linear anisotropic redshifting of the
linear last scattering surface

ATsmall - (1 + ATlarge)ATsmall

Reduced bispectrum b1, = Csl (eq +Ce;

/N

Large-scale Small-scale (non-perturbative)
power spectrum power spectrum

(Actually very small, so not very important)



Linear effects of large-scale modes
- Redshifting as photons travel through perturbed universe

- Transverse directions also affected:
perturbations at last scattering are distorted as well as anisotropically redshifted



Jabobi map relates observed angle to physical separation of pair of rays

A 56,
a > =

Er(A) =Dry(A)ob;
/ 1 ™

Physical separation
vector orthogonal to ray

_ Angular separation seen
Jacobi map by observer at A
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Evolution of Jacobi map:

Optical tidal matrix depends on the Riemann tensor: 71y = —EJESk k" R yped

(k% is wave vector along ray, Ef* projects into ray-orthogonal basis)
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‘Riemann = Weyl + Ricci’

Non-local part (does not depend on local density): Einstein equations relate Ricci to

- e.g. determined by Weyl (Newtonian) potential %(CD + W) Ztresi-energy tensor: depends on local
ensity

differential deflection of light rays =

= ray area changes due to expansion of
convergence and shear of beam

spacetime as the light propagates

- (Weyl) lensing - Ricci focussing

(can be modelled as transverse deflection angle) (cannot be modelled by deflection angle)

FRW background universe has Weyl=0, Ricci gives standard angular diameter distance

At radial distance ., trace of Jacobi map determines physical areas: I’/2 = x.a,



Beam propagation in a perturbed universe, e.g. Conformal Newtonian Gauge

ds* = a®(n)[(1 +20)dn* — (1 — 28)4;;dz*dz"]
§1(A) =Dry(A)60,

Trace-free part of Jacobi map depends on the shear: D) = a1

Aw —
g = VuVyt v=-2 / 2 X:(X Gy (x4 — X)
’ W 0 *

Area of beam determined by trace of Jacobi map:

Din,n)/2=xn,n)an)l+L4—P—K+n-vy]

CMB is constant temperature surface:

_ i) AL ,
n=1.+0n D/2 = y.a, |1+ X T —-iI?—fi.+1'i-v_4]
ff:""tr"f":T£1 o a' / X+ \ ; '\
Radial displacement G = A 4— @ Local aberration

(small, &y < x.) Ricci focussing (Weyl) convergence
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Ricci focussing:
beam contracts more leaving LSS
/ = same physical size looks smaller

CMB frame

Last scattering surface

Reheaating surface

_ Overdensity (¢ larger)
underdensity

(Weyl lensing effect not shown and partly cancels area effect)



Gauge-invariant Ricci focussing ¢ = A, /4 — @

o
=

Comoving distance

Newtonian Gauge

Last scattering surface

Reheating surface



Observable CMB bispectrum from single-field inflation

Linear-short leg approximation for nearly-squeezed shapes:

aX*

iy
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Where X; here is 6T, k and ¢, with g ~ x.a.(1+ ¢, —«). For super-horizon adiabatic modes ¢, = {,.

Weyl lensing bispectrum

1. b~
bioats = 5 (11 +1) + Lao(lp + 1) = l3(I3 + 1)] G, Y Gy, + PEIMS
. [ 1aezc dc, 1 = (I, — 13)/2
Squeezed limit ([; « 1) Bi, 1oy = C-*E:“ el fﬂﬂ;} +cosz¢glfm] U2 3)/
Ricci focussing bispectrum
.1 d , .
b o CT(:-:] - [C c ]
Iylalg ' 9dIn s 1o + Uiy
Squeezed limit (I; K1) b1, = _ore Ll _d (I2Cy)
b 12dInl

+ anisotropic redshifting bispectrum (from before)  biia1s = Ci, (C'fg + C’fs)



Weyl lensing bispectrum
C/*: Correlation between lenses and CMB temperature?

X .
ATisw(n) = 2 f dxW(xm:mno — x)
0

Overdensity: magnification correlated with positive Integrated Sachs-Wolfe (net blueshift)

Underdensity: demagnification correlated with negative Integrated Sachs-Wolfe (net redshift)
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Cl*: Correlation between lenses and CMB temperature?

e The late Integrated Sachs Wolfe effect (late ISW)

at low redshift from decaying potentials

e Large-scale modes that span recombination and
also act as lenses

e The early Integrated Sachs Wolfe effect (early ISW)
due to the transition from radiation to matter dom- L Linear effects,
ination, and decaying modes All included in self-consistent

. _ linear calculation with CAMB
e Lenses close to last-scattering being correlated to

density perturbations that have infall giving a
Doppler signal in the CMB

e Doppler signal from scattering at reionization

e Lenses at last-scattering that directly correlate per-
turbations to lensing at the recombination surface

e Non-linear Rees-Sciama signal at low redshift from } Non-linear growth effect
non-linear gravitational clustering - estimate using e.g. Halofit

but frequency dependent

e Non-linear SZ signal from scattering in clusters } Potentially important,
- ‘foregrounds’

e Correlations due to foreground contaminants



Contributions to the lensing-CMB cross-correlation, crv
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(note Rees-Sciama contribution is small, numerical problem with much larger result of Verde et al, Mangilli et al ;
see also Junk et al. 2012 who agree with me)



Weyl lensing total + Ricci focussing (+ estimates of sub-horizon dynamics)
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Does this look like squeezed non-Gaussianity fy; from multi-field inflation
(local modulation of small scale perturbation amplitudes in each Hubble patch)?

bias on fyni,
Data used 7 rer || Weyl| Ricei| Redshift || Total ) )
Dominated by lensing fy;, ~ 6 — 10
T 43f[os5] 15[ 022 107 Ricci i 0c1 i
Planck T 5.0 64|10 -022 [ 71 icciis an O(1) correction
T (I, < 60) 46 |[106] 1.7 | -025 [[120
Planck T (I; < 60)|| 6.2 || 7.0 | 1.1 | -0.25 | 7.9 . .

T (i < 60) : S I Calculation reliable for I; < 60 where
tee 2L 20 L 005 ) 3T dynamical effects suppressed by small

Planck T+E || 5.2 || 43 [ 10| -015 || 5.2 y pp y

k2 :
—: do not need fully non-linear
TABLE I: Individual and total biases on primordial loecal- H

model non-Gaussianity parameterized by fyp for CMB tem- dyngmical calculation of l_aispectrum a
perature and E-polarization data with Planck-like noise (as- la Pitrou et al to make reliable fy;,
suming isotropic coverage over the full sky with sensitivity constraint

AT = AQ/2 = AU/2 = 50pKaremin [N/ = NF/4 =
2 % 10~*uK? and a beam FWHM of 7aremin) or cosmic-
variance limited data with I, = 2000. Results are assuming
that non- fiyr, contributions are only significant at [y < 300
and negligible dynamical effects; the I} < 60 results are fil-
tered to only use large scale modulations and are therefore
immune to small-scale modulation effects. The bias is the
systematic error on fyr, if the given contribution is neglected,
which can be compared to o5, which is the Fisher error es-
timate (including lensing signal variance).



Signal easily modelled
Squeezed shape but different phase, angle and scale dependence
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Note: ‘Maldacena’ bispectrum

o 1 171 d 1 d
fg{k]ﬁgrkg}{;rk;ﬂ {r, 1|5 zﬂ{k]+k)+k;}P.:”u \IE [L; dln ks ”u PR,:l'F.lj“l+pd1 T2 {A R.‘{A \|1|:|

Consistency relation: fy;, ~ 0(ng — 1)

IS not an observable

- cannot measure comoving curvature perturbations on scales larger than the horizon directly
- d/d(In k) and CMB transfer functions do not commute: cannot get correct result from primordial fy, ~ (ny — 1)

Observable CMB analogue is Ricci focussing bispectrum

1 d

re-
butats = =C1, 3 qmy

(12C))

- larger because of acoustic oscillations, non-zero for ng = 1
- different shape to fy; in CMB, but projects as fy; = 0(1)

Question: primordial bispectrum calculations includes time shift dlzk terms
- not correct to calculate effective fy; at end of inflation, what to do? (e.g. features)



Lensing of primordial non-Gaussianity

General case at leading order: Hanson et al. arxXiv:0905.4732
Fast non-perturbative method: Pearson, Lewis, Regan arXiv:1201.1010

Bispectrum slices are smoothed by lensing, just like power spectrum
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FIG. 5: The fractional change in the reduced bispectrum slice b10,1,1410 due to lensing. The blue line shows the non-perturbative
approximation of this paper, the black line shows the leading-order perturbative result from Ref. [1]. The red lines show the
result of 1000 Monte Carlo simulations of Ref. [1] smoothed over Al = 5. The new approximation only needs to lens the
isotropic component of the bispectrum, and then 1= both significantly more accurate on small scales and faster to compute.

BUT lensing preserves total power: expect ~ 0 bias on primordial fy; estimators



Squeezed trispectrum

* Lensing gives large trispectrum, this is what is used for lensing reconstruction

* Also want to look for primordial trispectrum

e.g. from primordial modulation ((x) = (p(x)[1 + &(x)]

Squeezed shape, constant modulation = T'(n) =Ty(n)[1+ ¢(n, )],
C“”
Easy accurate estimator for ty; IS ™, (L) = ¢
7
2 - oL +1 CY imal t t level
NL =~ min 2. DAL+ C6 (optimal to percent level)

Lensing bias on 1,

L - 2L +1 ﬂ'f_{."j'f
!'. [:||||l Z L2 Jr 1 1)2 o
r . |I.

- IIIIII'l

All T,;; signal at low | < ~ 10: cut to avoid blue lensing signal at higher [

Then fairly small, 17 to 40 depending on data: small compared to o;,, = 150

Lensing not a problem for t,; constraints (because they are so weak!)




Conclusions

« Single field inflation predicts significant non-Gaussianity in the observed CMB

- mostly due to (Weyl) lensing

- total projects onto fy; ~ 7 for Planck temperature

- Ricci focussing expansion of beam recovers the 6N from inflation,
. gives equivalent of consistency relation, but larger
: small and not quite observable, projects onto fy; ~ 1

- Squeezed calculation reliable at [; < 60
: robust constraints on fy; without 2"9 order dynamics

- effect on trispectrum is small

» Lensing bispectrum signal important but distinctive shape
- dominated by late ISW correlation, but other term important (eg. early ISW)
- predicted accurately by linear theory (Rees-Sciama is tiny)

« On smaller scales, and non-squeezed shapes, need full numerical calculation
of non-linear dynamical effects in CMB

Question: for numerical calculation of squeezed non-linear effects, how to you handle/separate the large lensing signal?
(fyr ~ 3 sounds like mostly lensing to me)



