Stats for Engineers Lecture 9

## **Summary From Last Time**

## **Confidence Intervals for the mean**

If  $\sigma^2$  is **known**, confidence interval for  $\mu$  is  $\overline{X} - z \sqrt{\frac{\sigma^2}{n}}$  to  $\overline{X} + z \sqrt{\frac{\sigma^2}{n}}$ , where z is obtained from Normal tables.

If  $\sigma^2$  is **unknown** (only know sample variance  $s^2$ ):

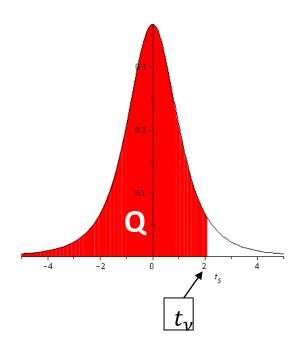
Assuming independent Normal data, the confidence interval for  $\mu$  is:

$$\bar{X} - t_{n-1}\sqrt{\frac{s^2}{n}}$$
 to  $\bar{X} + t_{n-1}\sqrt{\frac{s^2}{n}}$ 

Student t-distribution

t-tables 
$$Q(t_{\nu}) = \int_{-\infty}^{t_{\nu}} f_{\nu}(t) dt$$

$$\nu = n - 1$$



#### Sample size

How many random samples do you need to reach desired level of precision?

Suppose we want to estimate  $\mu$  to within  $\pm \delta$ , where  $\delta$  (and the degree of confidence) is given.

$$\delta = t_{n-1} \sqrt{\frac{s^2}{n}}$$

$$\Rightarrow n = \frac{t_{n-1}^2 s^2}{\delta^2}$$

Need:

- Estimate of  $s^2$  (e.g. previous experiments)

- Estimate of  $t_{n-1}$ . This depends on *n*, but not very strongly.

e.g. take  $t_{n-1} = 2.1$  for 95% confidence.

Rule of thumb: for 95% confidence, choose  $n = \frac{2.1^2 \times \text{Estimate of variance}}{s^2}$ 

Student t distribution: values of x

| DF Q |        |           |         |         |         |         |  |  |  |  |  |  |  |
|------|--------|-----------|---------|---------|---------|---------|--|--|--|--|--|--|--|
| v    | 0.95   | 0.975     | 0.99    | 0.995   | 0.999   | 0.9995  |  |  |  |  |  |  |  |
| 1    | 6.3138 | 12.7062   | 31.8205 | 63.6567 | 318.309 | 636.619 |  |  |  |  |  |  |  |
| 2    | 2.9200 | 4.3027    | 6.9646  | 9.9248  | 22.327  | 31.599  |  |  |  |  |  |  |  |
| 3    | 2.3534 | 3.1824    | 4.5407  | 5.8409  | 10.215  | 12.924  |  |  |  |  |  |  |  |
| 4    | 2.1318 | 2.7764    | 3.7469  | 4.6041  | 7.173   | 8.610   |  |  |  |  |  |  |  |
| 5    | 2.0150 | 2.5706    | 3.3649  | 4.0321  | 5.893   | 6.869   |  |  |  |  |  |  |  |
| 6    | 1.9432 | 2.4469    | 3.1427  | 3.7074  | 5.208   | 5.959   |  |  |  |  |  |  |  |
| 7    | 1.8946 | 2.3646    | 2.9980  | 3.4995  | 4.785   | 5.408   |  |  |  |  |  |  |  |
| 8    | 1.8595 | 2.3060    | 2.8965  | 3.3554  | 4.501   | 5.041   |  |  |  |  |  |  |  |
| 9    | 1.8331 | 2.2622    | 2.8214  | 3.2498  | 4.297   | 4.781   |  |  |  |  |  |  |  |
| 10   | 1.8125 | 2 2 2 8 1 | 2.7638  | 3.1693  | 4.144   | 4.587   |  |  |  |  |  |  |  |
| 11   | 1.7959 | 2.2010    | 2.7181  | 3.1058  | 4.025   | 4.437   |  |  |  |  |  |  |  |
| 12   | 1.7823 | 2.1788    | 2.6810  | 3.0545  | 3.930   | 4.318   |  |  |  |  |  |  |  |
| 13   | 1.7709 | 2.1604    | 2.6503  | 3.0123  | 3.852   | 4.221   |  |  |  |  |  |  |  |
| 14   | 1.7613 | 2.1448    | 2.6245  | 2.9768  | 3.787   | 4.140   |  |  |  |  |  |  |  |
| 15   | 1.7531 | 2.1314    | 2.6025  | 2.9467  | 3.733   | 4.073   |  |  |  |  |  |  |  |
| 16   | 1.745) | 2.1199    | 2.5835  | 2.9208  | 3.686   | 4.015   |  |  |  |  |  |  |  |
| 17   | 1.7395 | 2.1098    | 2.5669  | 2.8982  | 3.646   | 3.965   |  |  |  |  |  |  |  |
| 18   | 1.7341 | 2.1009    | 2.5524  | 2.8784  | 3.610   | 3.922   |  |  |  |  |  |  |  |
| 19   | 1.7291 | 2.0930    | 2.5395  | 2.8609  | 3.579   | 3.883   |  |  |  |  |  |  |  |
| 20   | 1.7247 | 2.0860    | 2.5280  | 2.8453  | 3.552   | 3.850   |  |  |  |  |  |  |  |
| 21   | 1.7207 | 2.0796    | 2.5176  | 2.8314  | 3.527   | 3.819   |  |  |  |  |  |  |  |
| 22   | 1.717  | 2.0739    | 2.5083  | 2.8188  | 3.505   | 3.792   |  |  |  |  |  |  |  |
| 23   | 1.7139 | 2.0687    | 2.4999  | 2.8073  | 3.485   | 3.768   |  |  |  |  |  |  |  |
| 24   | 1.7109 | 2.0639    | 2.4922  | 2.7969  | 3.467   | 3.745   |  |  |  |  |  |  |  |
| 25   | 1.7081 | 2.0595    | 2.4851  | 2.7874  | 3.450   | 3.725   |  |  |  |  |  |  |  |
| 26   | 1.7056 | 2.0555    | 2.4786  | 2.7787  | 3.435   | 3.707   |  |  |  |  |  |  |  |
| 27   | 1.7033 | 2.0518    | 2.4727  | 2.7707  | 3.421   | 3.690   |  |  |  |  |  |  |  |
| 28   | 1.7011 | 2.0484    | 2.4671  | 2.7633  | 3.408   | 3.674   |  |  |  |  |  |  |  |
| 29   | 1.6991 | 2.0452    | 2.4620  | 2.7564  | 3.396   | 3.659   |  |  |  |  |  |  |  |
| 30   | 1.6973 | 2.0423    | 2.4573  | 2.7500  | 3.385   | 3.646   |  |  |  |  |  |  |  |
| 31   | 1.6955 | 2.0395    | 2.4528  | 2.7440  | 3.375   | 3.633   |  |  |  |  |  |  |  |
| 32   | 1.6939 | 2.0369    | 2.4487  | 2.7385  | 3.365   | 3.622   |  |  |  |  |  |  |  |
| 33   | 1.6924 | 2.0345    | 2.4448  | 2.7333  | 3.356   | 3.611   |  |  |  |  |  |  |  |
| 34   | 1.6909 | 2.0322    | 2.4411  | 2.7284  | 3.348   | 3.601   |  |  |  |  |  |  |  |
| 35   | 1.6896 | 2.0301    | 2.4377  | 2.7238  | 3.340   | 3.591   |  |  |  |  |  |  |  |
| 36   | 1.6883 | 2.0281    | 2.4345  | 2.7195  | 3.333   | 3.582   |  |  |  |  |  |  |  |
| 37   | 1.6871 | 2.0262    | 2.4314  | 2.7154  | 3.326   | 3.574   |  |  |  |  |  |  |  |
| 38   | 1.6860 | 2.0244    | 2.4286  | 2.7116  | 3.319   | 3.566   |  |  |  |  |  |  |  |
| 39   | 1.6849 | 2.0227    | 2.4258  | 2.7079  | 3.313   | 3.558   |  |  |  |  |  |  |  |
| 40   | 1.6839 | 2.0211    | 2.4233  | 2.7045  | 3.307   | 3.551   |  |  |  |  |  |  |  |
| 45   | 1.6794 | 2.0141    | 2.4121  | 2.6896  | 3.281   | 3.520   |  |  |  |  |  |  |  |
| 50   | 1.6759 | 2.0086    | 2.4033  | 2.6778  | 3.261   | 3.496   |  |  |  |  |  |  |  |
| 60   | 1.6706 | 2.0003    | 2.3901  | 2.6603  | 3.232   | 3.460   |  |  |  |  |  |  |  |
| 70   | 1.6669 | 1.9944    | 2.3808  | 2.6479  | 3.211   | 3.435   |  |  |  |  |  |  |  |
| 80   | 1.6641 | 1.9901    | 2.3739  | 2.6387  | 3.195   | 3.416   |  |  |  |  |  |  |  |
| 90   | 1.6620 | 1.9867    | 2.3685  | 2.6316  | 3.183   | 3.402   |  |  |  |  |  |  |  |
| 100  | 1.6602 | 1.9840    | 2.3642  | 2.6259  | 3.174   | 3.390   |  |  |  |  |  |  |  |
| ~    | 1.6449 | 1.9600    | 2.3263  | 2.5758  | 3.090   | 3.291   |  |  |  |  |  |  |  |

## Example

A large number of steel plates will be used to build a ship. Ten are tested and found to have sample mean weight  $\overline{X} = 2.13$ kg and sample variance  $s^2 = (0.25 \text{ kg})^2$ . How many need to be tested to determine the mean weight with 95% confidence to within  $\pm 0.1$  kg?



#### Answer:

Assuming plates have independent weights with a Normal distribution

$$\delta = 0.1 \text{kg} = t_{n-1} \sqrt{\frac{s^2}{n}}$$

Take  $t_{n-1} \approx 2.1$  for 95% confidence.

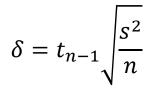
$$\Rightarrow n = \frac{t_{n-1}^2 s^2}{\delta^2} = \frac{2.1^2 \ 0.25^2}{0.1^2} = 27.6$$

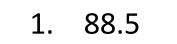
i.e. need to test about 28



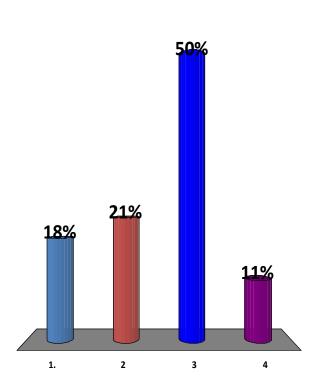
## Number of samples

If you need 28 samples for the confidence interval to be  $\pm 0.1$  kg, approximately how many samples would you need to get a more accurate answer with confidence interval  $\pm 0.01$  kg?





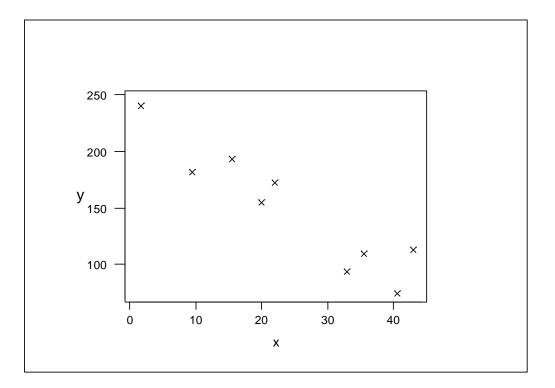
$$\delta = t_{n-1} \sqrt{\frac{s^2}{n}}$$
$$\Rightarrow \frac{\delta}{10} = t_{n-1} \sqrt{\frac{s^2}{100n}} \text{ so need } 100 \times \text{more. i.e. } 2800$$



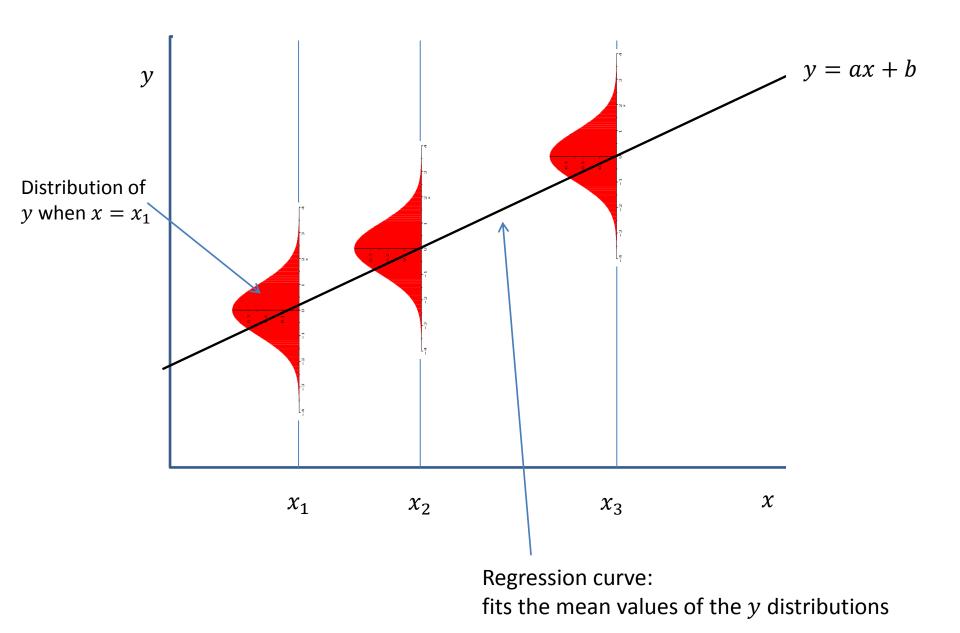
## **Linear regression**

We measure a response variable y at various values of a controlled variable x

e.g. measure fuel efficiency y at various values of an experimentally controlled external temperature x

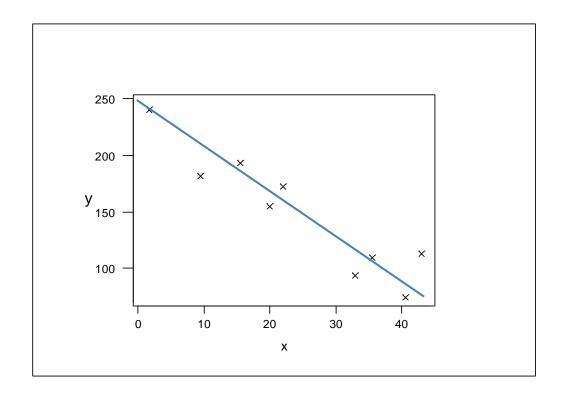


Linear regression: fitting a straight line to the *mean* value of y as a function of x



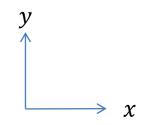
From a sample of y values at various x, we want to fit the regression curve.

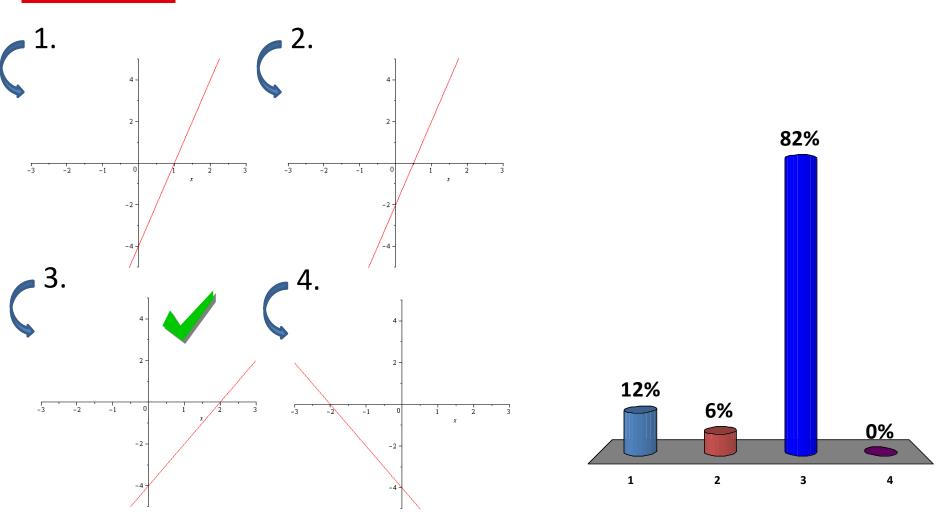
e.g.



## Straight line plots

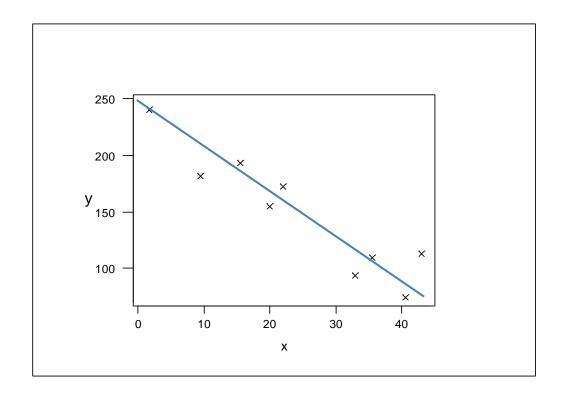
Which graph is of the line y = 2x - 4?



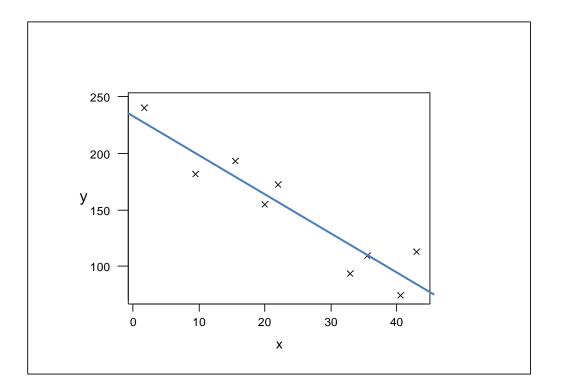


From a sample of y values at various x, we want to fit the regression curve.

e.g.



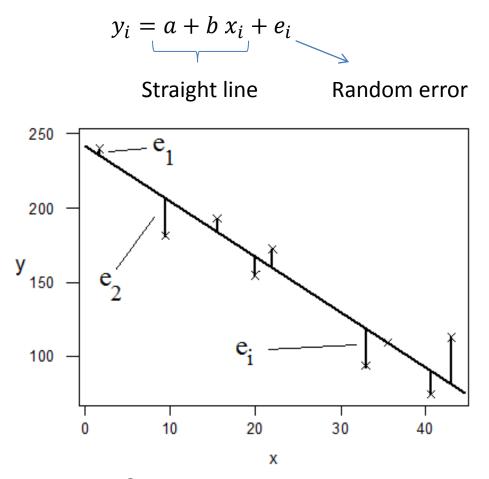




What do we mean by a line being a 'good fit'?

Equation of straight line is y = a + bx

Simple model for data:



Simplest assumption:  $e_i \sim N(0, \sigma^2)$  for all *i*, and  $e_i$ 's are independent

- Linear regression model

Model is  $y_i = a + b x_i + e_i$ 

Want to estimate parameters *a* and *b*, using the data.

e.g. - choose *a* and *b* to minimize the errors

Maximum likelihood estimate = least -squares estimate

Minimize 
$$E = \sum_{i} e_i^2 = \sum_{i} (y_i - \hat{y}_i) = \sum_{i} (y_i - a - bx_i)^2$$
  
Data point Straight-line prediction

E is defined and can be minimized even when errors not Normal

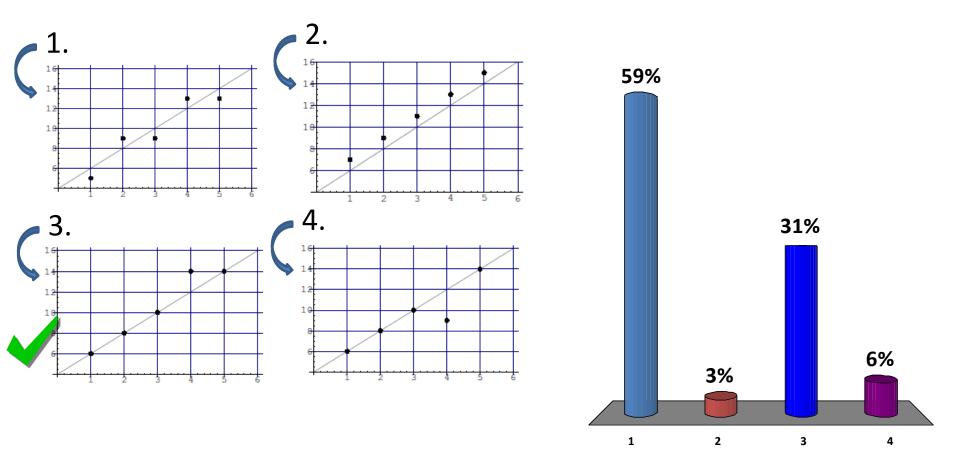
- least-squares is simple general prescription for fitting a straight line

(but statistical interpretation in general less clear)



Question from Derek Bruff

The line y = 4 + 2x has been proposed as a line of best fit for the following four sets of data. For which data set is this line the best fit (minimum  $E = \sum_i e_i^2$ )?



How to find *a* and *b* that minimize  $E = \sum_{i} e_i^2 = \sum_{i} (y_i - a - bx_i)^2$ ?

For minimum want 
$$\frac{\partial E}{\partial a} = 0$$
 and  $\frac{\partial E}{\partial b} = 0$ , see notes for derivation

Solution is the least-squares estimates  $\hat{a}$  and  $\hat{b}$ :

$$\hat{b} = \frac{S_{xy}}{S_{xx}}$$
 and  $\hat{a} = \bar{y} - \hat{b} \bar{x}$   
Sample means

Where

$$S_{xx} = \sum_{i} x_{i}^{2} - \frac{(\sum_{i} x_{i})^{2}}{n} = \sum_{i} (x_{i} - \bar{x})^{2}$$
$$S_{xy} = \sum_{i} x_{i} y_{i} - \frac{\sum_{i} x_{i} \sum_{i} y_{i}}{n} = \sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})$$

Equation of the fitted line is  $\hat{y} = \hat{a} + \hat{b}x$ 

Engineering Statistics

# Most of the things you need to use are on the formula sheet

#### STATISTICAL FORMULAE

- 1. For X having the Binomial distribution, B(n, p):  $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ , for k = 0, 1, 2, ..., n and X has mean np and variance np(1-p).
- 2. For Y having the Poisson distribution, parameter  $\lambda$ :  $P(Y = k) = \frac{e^{-\lambda} \lambda^k}{k!}$ , for k = 0, 1, 2, ... and Y has mean  $\lambda$  and variance  $\lambda$ .
- For the sample x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>, the sample mean is x̄ = ∑<sub>i=1</sub><sup>n</sup> x<sub>i</sub> / n and the sample variance is s<sup>2</sup> = ∑<sub>i=1</sub><sup>n</sup> (x<sub>i</sub> - x̄)<sup>2</sup> / (n-1) = (∑<sub>i=1</sub><sup>n</sup> x<sub>i</sub><sup>2</sup> - nx̄<sup>2</sup>) / (n-1).
   Observations x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>m</sub> occur with frequencies f<sub>1</sub>, f<sub>2</sub>, ..., f<sub>m</sub>, the sample mean is x̄ = ∑<sub>i=1</sub><sup>m</sup> f<sub>i</sub>x<sub>i</sub> and the sample variance is s<sup>2</sup> = ∑<sub>i=1</sub><sup>m</sup> f<sub>i</sub>(x<sub>i</sub> - x̄)<sup>2</sup> = ∑<sub>i=1</sub><sup>m</sup> f<sub>i</sub>x<sub>i</sub><sup>2</sup> - nx̄<sup>2</sup>.
   Random sample X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n</sub> from a N(μ σ<sup>2</sup>) distribution, then X̄ - μ has a

N(0, 1) distribution and 
$$\frac{X - \mu}{\sqrt{s^2 / n}}$$
 has a  $t_{n-1}$  distribution.

 B(n, p) is approximated by N(np, np(1-p)), when n is large and np is not too close to 0 or n. Poisson, λ, is approximated by N(λ, λ), when λ is large.

7. The linear regression line is estimated by 
$$y = \hat{a} + \hat{b}x$$
 where  $\hat{b} = S_{xy} / S_{xx}$ ,  
 $\hat{a} = \overline{y} - \hat{b}\overline{x}$ ,  $\hat{\sigma}^2 = \frac{S_{xy} - \hat{b}S_{xy}}{n-2}$ ,  $S_{xx} = \sum x_i^2 - \frac{(\sum x_i)^2}{n}$ ,  $S_{yy} = \sum y_i^2 - \frac{(\sum y_i)^2}{n}$  and  
 $S_{xy} = \sum x_i y_i - \frac{\sum x_i \sum y_i}{n} \cdot \frac{\hat{b} - b}{\sqrt{\hat{\sigma}^2 / S_{xx}}}$  has a  $t_{n-2}$  distribution. The mean value of  $y$   
at  $x_0$ ,  $a + bx_0$ , has confidence interval  $\hat{a} + \hat{b}x_0 \pm t_{n-2}\sqrt{\hat{\sigma}^2 (\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}})}$ .  
A confidence interval for a single response at  $x_0$  is  
 $\hat{a} + \hat{b}x_0 \pm t_{n-2}\sqrt{\hat{\sigma}^2 (1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}})}$ .

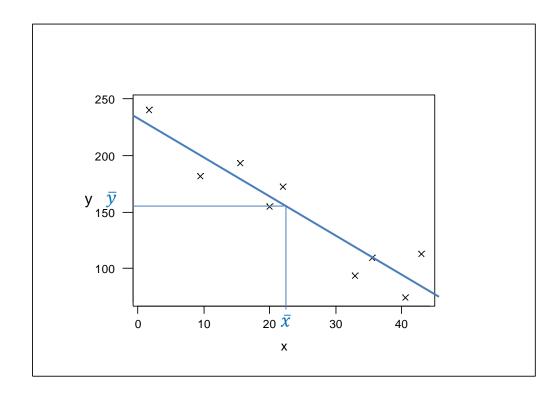
The (Pearson product-moment) sample correlation is  $r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$ 

Note that since  $\hat{a} = \bar{y} - \hat{b} \ \bar{x}$ 

$$\hat{y} = \hat{a} + \hat{b}x \\ = \bar{y} - \hat{b}\bar{x} + \hat{b}x$$

$$\Rightarrow \hat{y} - \bar{y} = \hat{b}(x - \bar{x})$$

i.e.  $(\bar{x}, \bar{y})$  is on the line



#### Example:

The data *y* has been observed for various values of *x*, as follows:

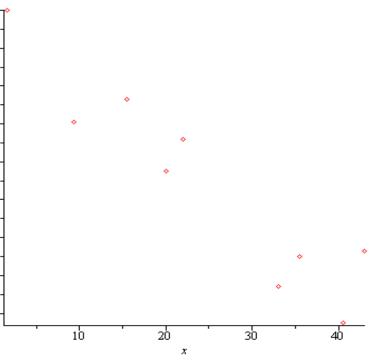
| У | 240 | 181 | 193  | 155  | 172  | 110  | 113  | 75   | 94   |
|---|-----|-----|------|------|------|------|------|------|------|
| х | 1.6 | 9.4 | 15.5 | 20.0 | 22.0 | 35.5 | 43.0 | 40.5 | 33.0 |

Fit the simple linear regression model using least squares.

#### Answer:

Want to fit  $\hat{y} = \hat{a} + \hat{b}x$ 240*n* = 9 220  $\sum_{i} x_{i} = 220.5$ ,  $\sum_{i} y_{i} = 1333.0$ 200  $\sum_{i} x_{i}^{2} = 7053.7$ ,  $\sum_{i} y_{i}^{2} = 220549$ ,  $\sum_{i} x_{i} y_{i} = 26864$ 180-160 v  $S_{xx} = 7053.7 - \frac{220.5^2}{9} = 1651.42$ 140  $120 \cdot$  $S_{xy} = 26864 - \frac{220.50 \times 1333.0}{9} = -5794.1$ 100-80.  $\Rightarrow \hat{b} = \frac{S_{xy}}{S_{yy}} = -\frac{5794.5}{1651.45} = -3.5086$ 

$$\hat{b} = \frac{S_{xy}}{S_{xx}} \text{ and } \hat{a} = \bar{y} - \hat{b} \, \bar{x}$$
$$S_{xx} = \sum_{i} x_i^2 - \frac{(\sum_i x_i)^2}{n}$$
$$S_{xy} = \sum_{i} x_i y_i - \frac{\sum_i x_i \sum_i y_i}{n}$$

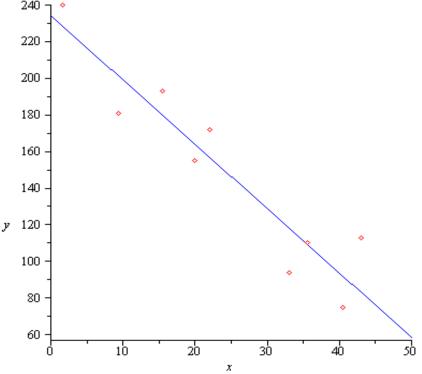


#### Answer:

Want to fit 
$$\hat{y} = \hat{a} + \hat{b}x$$
  
 $n = 9$   
 $\sum_{i} x_{i} = 220.5$ ,  $\sum_{i} y_{i} = 1333.0$   
 $\sum_{i} x_{i}^{2} = 7053.7$ ,  $\sum_{i} y_{i}^{2} = 220549$ ,  $\sum_{i} x_{i} y_{i} = 26864$   
 $S_{xx} = 7053.7 - \frac{220.5^{2}}{9} = 1651.42$   
 $S_{xy} = 26864 - \frac{220.50 \times 1333.0}{9} = -5794.1$   
 $\Rightarrow \hat{b} = \frac{S_{xy}}{S_{xx}} = -\frac{5794.5}{1651.45} = -3.5086$   
Now just need  $\hat{a}$   
 $\hat{a} = \bar{y} - \hat{b}\bar{x}$   
 $= \frac{1333.0}{9} - (-3.5086) \times \frac{(220.50)}{9} = 234.1$ 

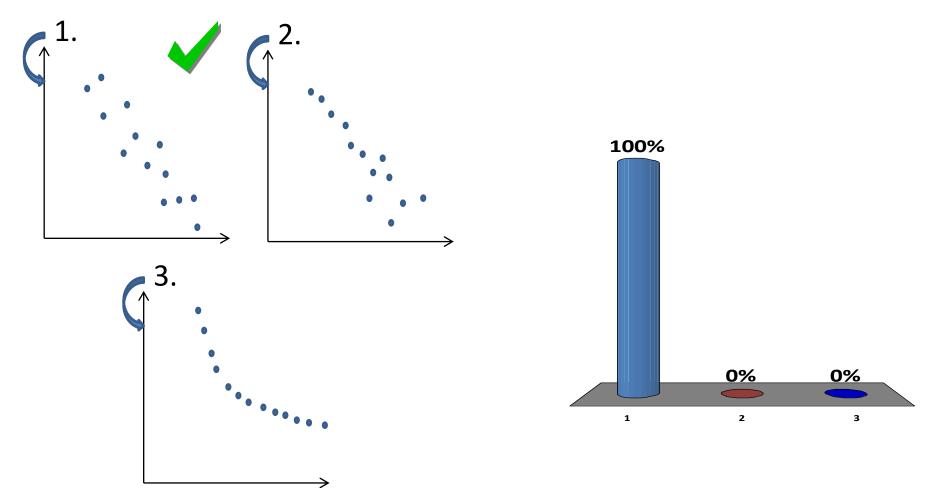
$$y = 234.1 - 3.509x$$

$$\hat{b} = \frac{S_{xy}}{S_{xx}} \text{ and } \hat{a} = \bar{y} - \hat{b} \, \bar{x}$$
$$S_{xx} = \sum_{i} x_i^2 - \frac{(\sum_i x_i)^2}{n}$$
$$S_{xy} = \sum_{i} x_i y_i - \frac{\sum_i x_i \sum_i y_i}{n}$$





Which of the following data are likely to be most appropriately modelled using a linear regression model?



#### Quantifying the goodness of the fit

Estimating  $\sigma^2$ : variance of y about the fitted line

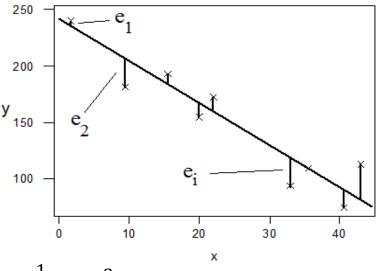
Estimated error is:  $\hat{e}_i = y_i - \hat{y}_i$ 

 $\mu_e = 0$ , so the ordinary sample variance of the  $e_i$ 's is  $\sim \frac{1}{n-1} \sum_i \hat{e}_i^2$ 

In fact, this is biased since two parameters, *a* and *b* have been estimated. The unbiased estimate is:

$$\hat{\sigma}^{2} = \frac{1}{n-2} \sum \hat{e}_{i}^{2} = \frac{1}{n-2} \sum (y_{i} - \hat{y}_{i})^{2}$$
$$= \frac{S_{yy} - \hat{b}S_{xy}}{n-2} \qquad [derivation in notes]$$

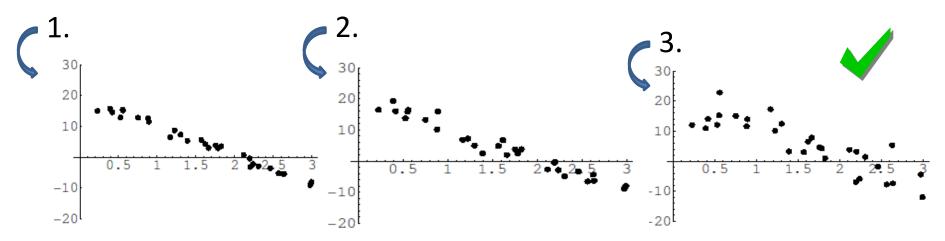
#### Residual sum of squares





Which of the following plots would have the greatest residual sum of squares [variance of *y* about the fitted line]?

Question from Derek Bruff



63%

