
Stats for Engineers Lecture 7 



Summary From Last Time 

Normal/Gaussian distribution 

𝜎 

𝑓 𝑥 =
1

2𝜋𝜎2
𝑒

− 𝑥−𝜇 2

2𝜎2       (−∞ < 𝑥 <  ∞)   

𝜇: mean 𝜎:  standard deviation 

Q z = 𝑃 𝑍 ≤ 𝑧 =   𝑓 𝑥 𝑑𝑥
𝑧

−∞

 

𝑍 =
𝑋−𝜇

𝜎
∼ 𝑁(0,1)  

Central Limit Theorem: Sums of independent random variables tends to normal 
distribution as you add many 

Normal approximation to the Binomial 
  
If 𝑋 ∼ 𝐵(𝑛, 𝑝) and 𝑛 is large and 𝑛𝑝 is not too near 0 or 1, then 𝑋is approximately 𝑁 𝑛𝑝, 𝑛𝑝 1 − 𝑝 .  

Q 



Normal approximation to the 
Poisson  
  
If 𝑌 ∼ Poisson parameter 𝜆  
and 𝜆 is large (> 7, say) 
then 𝑌 has approximately a 
𝑁(𝜆, 𝜆) distribution. 



Example: Stock Control 
  
At a given hospital, patients with a particular virus arrive at an average rate of once 
every five days. Pills to treat the virus (one per patient) have to be ordered every 100 
days. You are currently out of pills; how many should you order if the probability of 
running out is to be less than 0.005? 

Solution 
  
Assume the patients arrive independently, so this is a Poisson process, with rate 0.2/day. 
  

Therefore, Y, number of pills needed in 100 days,  ~ Poisson, 𝜆 = 100 x 0.2 = 20. 
  
We want  
  𝑃 𝑌 > 𝑛 <  0.005   ⇒ 𝑃 𝑌 ≤ 𝑛 > 0.995 

⇒  𝑛 +
1

2
= 𝑥 = 20 + 2.575 20 = 31.5 

Q 𝑧 = 0.995 ⇒ 𝑧 = 2.575  Using table: 

Normal approximation, find 𝑋 so that 𝑃 𝑋 ≤ 𝑛 +
1

2
> 0.995  

𝑧 =
𝑥 − 𝜇

𝜎
 

Need to order 𝑛 ≥ 32pills to be safe. 

𝜇 = 𝜎 = 𝜆 



Variation 
  
Let’s say the virus is deadly, so we want to make sure the probability is less than 
1 in a million, 10-6. How many pills do we need to order? 
 

A normal approximation would give 4.7𝜎 above the mean, so 𝑛 ≥ 42 pills 
 

But surely getting just a bit above twice the average number of cases is not 
that unlikely?? (42 pills can treat 0.42 people a day on average) 
 

Yes indeed, the assumption of independence is extremely unlikely to be valid.  
(viruses often infectious!) 
  
i.e. the normal approximation result is wrong because we made an inaccurate 
assumption 
  

Don’t use approximations that are too simple if their failure might be important! 
 
Rare events in particular are often a lot more likely than predicted by (too-) simple 
approximations for the probability distribution. 



Normal distribution summary 

Central limit theorem means Normal distribution is ubiquitous 

- Sums and averages of random variables tend to a normal distribution for large 𝑛 

- Sums of Normal variates also have Normal distributions 

- Normal is useful approximation to Binomial and Poisson for large 𝑛 

- Calculate integrals using tables of  Q standard normal variable 𝑍 =
𝑋 − 𝜇

𝜎
 



Descriptive Statistics 
  
Types of data 
  
A variate or random variable is a quantity or attribute whose value may vary 
 
There are various types of variate: 
  
Å Qualitative or nominal; described by a word or phrase (e.g. blood group, colour) 

 
Å Quantitative; described by a number  

(e.g. time till cure, number of calls arriving at a telephone exchange in 5 seconds) 
  
Å Ordinal; this is an "in-between" case. Observations are not numbers but they can be 

ordered (e.g. much improved, improved, same, worse, much worse) 
 



Quantitative data can be: 
  
 Discrete: the variate can only take one of a finite or countable number of 
values (e.g. a count) 
  
 Continuous: the variate is a measurement which can take any value in an 
interval of the real line (e.g. a weight). 



Discrete data: frequency table and bar chart 
  
The frequency of a value is the number of observations taking that value. 
  
A frequency table is a list of possible values and their frequencies. 
  
A bar chart consists of bars corresponding to each of the possible values, whose 
heights are equal to the frequencies. 



Number of 

accidents 

Tallies Frequency 

0 |||| |||| |||| |||| |||| |||| |||| |||| |||| |||| |||| 55 

1 |||| |||| |||| 14 

2 ||||  5 

3 ||  2 

4    0 

5 ||  2 

6 |  1 

7     0 

8 |  1 
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e.g. Discrete data: frequency table and bar chart 



Continuous data: histograms 
  
When the variate is continuous, we do not look at the frequency of each value, but 
group the values into intervals. The plot of frequency against interval is called a 
histogram. Be careful to define the interval boundaries unambiguously. 

LVEF Tallies Frequency 

24.5 - 34.5 |  1 

34.5 - 44.5 |  1 

44.5 - 54.5 |||  3 

54.5 - 64.5 ||||  ||||  |||  13 

64.5 - 74.5 ||||  ||||  ||||  ||||  ||||  ||||  ||||  ||||  ||||  45 

74.5 - 84.5 ||||  ||||  ||||  ||||  ||||  ||||  ||||  |  36 

Example 

The following data are the left ventricular ejection fractions (LVEF) for a group of 99 heart transplant patients.  
Construct a frequency table and histogram. 
 

   62    64    63    70    63    69    65    74    67    77    65    72    65  

   77    71    79    75    78    64    78    72    32    78    78    80    69  

   69    65    76    53    74    78    59    79    77    76    72    76    70  

   76    76    74    67    65    79    63    71    70    84    65    78    66  

   72    55    74    79    75    64    73    71    80    66    50    48    57  

   70    68    71    81    74    74    79    79    73    77    80    69    78  

   73    78    78    66    70    36    79    75    73    72    57    69    82  

   70    62    64    69    74    78    70    76  

 

 

Frequency table 



Histogram 
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Summary Statistics  

- Mean and variance, as for the distributions 
- BUT – now sample estimates, rather than population estimates 

Sample mean 
  
The sample mean of the values 𝑥1, 𝑥2, … , 𝑥𝑛is 
  

𝑥 =
𝑥1 + 𝑥2+. . 𝑥𝑛

𝑛
=

1

𝑛
 𝑥𝑖

𝑛

𝑖=1

 

  
This is just the average or arithmetic mean of the values. Sometimes the prefix "sample" 
is dropped, but then there is a possibility of confusion with the population mean which 
is defined later. 



Number of accidents,  Frequency     

0 55 0 

1 14 14 

2  5 10 

3  2 6 

4  0 0 

5  2 10 

6  1 6 

7   0 0 

8  1 8 

TOTAL  80 54 

⇒ 𝑥 =
54

80
= 0.675 

Frequency data: suppose that the frequency of the class with midpoint 𝑥𝑖 is 𝑓𝑖, for i = 
1, 2, ..., m). Then 

𝑥 =
𝑓1𝑥1 + 𝑓2𝑥2 + ⋯ + 𝑓𝑚𝑥𝑚

𝑛
=

1

𝑛
 𝑓𝑖𝑥𝑖

𝑚

𝑖=1

 

  
Where 𝑛 =  𝑓𝑖

𝑚
𝑖=1   = total number of observations. 

Example: 



Sample median 
  
The median is the central value in the sense that there as many values smaller than 
it as there are larger than it. 
  
If there are n observations then the median is:  
  

 the 
𝑛+1

2
 largest value, if  n is odd;  

 the sample mean of the 
𝑛

2
 largest and the 

𝑛

2
+ 1 largest values, if n is even. 

Mode 
  
The mode, or modal value, is the most frequently occurring value. For continuous data, 
the simplest definition of the mode is the midpoint of the interval with the highest 
rectangle in the histogram. (There is a more complicated definition involving the 
frequencies of neighbouring intervals.) It is only useful if there are a large number of 
observations. 



Comparing mean, median and mode 
  
Symmetric data: the mean median and mode 
will be approximately equal. 
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Skew data:  
 
- Tail of high values: positive skew 
- Tail of low values: negative skew 
 

IFS Briefing Note No 73 

Mode 

 
The median is less sensitive than the mean to 
extreme observations. The mode ignores 
them. 



Comparing mean, median and mode 
  
Symmetric data: the mean median and mode 
will be approximately equal. 
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- Tail of high values: positive skew 
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IFS Briefing Note No 73 

Mode 

 
The median is less sensitive than the mean to 
extreme observations. The mode ignores 
them. 



Location of the mean 
 
A distribution has many more events above the mean than below 
the mean. What can be said about this distribution? 

1 2 3

0% 0%0%

1. The distribution is positively 
skewed. 

2. The distribution is negatively 
skewed. 

3. The distribution is symmetric. 

Question  from Murphy et al. 

Countdown  

30  



Statistical Inference 

Probability theory: the probability distribution of the population is known; we 
want to derive results about the probability of one or more values ("random 
sample") - deduction. 

Statistics: the results of the random sample are known; we want to determine 
something about the probability distribution of the population - inference. 

In order to carry out valid inference, the sample must be representative, and 
preferably a random sample. 
  
Random sample:  (i)   no bias in the selection of the sample; 
  
  (ii)  different members of the sample chosen independently. 
  

Formal definition of a random sample: 𝑋1, 𝑋2, … 𝑋𝑛 are a random sample if each 
𝑋𝑖  has the same distribution and the 𝑋𝑖 's are all independent. 



Parameter estimation 
  
We assume that we know the type of distribution, but we do not know the value of the 
parameters 𝜃, say. We want to estimate 𝜃, on the basis of a random sample 
𝑋1, 𝑋2, … , 𝑋𝑛.  

 
Want to infer 𝑃 𝜃 𝐷 :  

P(θ|D) = 
P(D|θ)P(θ)

P(D)
 

  

𝑃 𝜃 : Prior 

𝑃(𝐷|𝜃): Likelihood 

Normalization constant 

How do we quickly get values of 𝜃 that are probable given our data? 

For example we may want to estimate the population mean, 𝜃 = 𝜇. 

Let’s call the random sample 𝑋1, 𝑋2, … , 𝑋𝑛 our data D.  
Given the data, what are the parameters?  

Bayes’ theorem  



Maximum likelihood estimator: the value of θ that maximizes the likelihood 
𝑃(𝐷|𝜃) is called the maximum likelihood estimate: it is the value that makes the 
data most likely, and if P(θ) does not depend on parameters (e.g. is a constant) is 
also the most probable value of the parameter given the observed data. 

Example    Random samples 𝑋1, 𝑋2, … 𝑋𝑛 are drawn from a Normal distribution.  
What is the maximum likelihood estimate of the mean μ? 
 

𝜇 = 𝑋 =  
1

𝑛
 𝑋𝑖

𝑛

𝑖=1

 Answer: Sample mean: 

𝑃(𝜇|𝐷) 

𝜇 
𝜇  

[see notes] 



Example    Random samples 𝑋1, 𝑋2, … 𝑋𝑛 are drawn from a Normal distribution.  
What is the maximum likelihood estimate of the variance 𝜎2 if 𝜇 = 𝜇 ? 
 

Answer:   

𝜎2 = 
1

𝑛
 𝑋𝑖

2 

𝑛

𝑖=1

– 𝑋 2. 

But is this a good way to estimate the variance from a random sample? 



A good but biased estimator 

A poor but unbiased estimator 

True mean 

 
  

Comparing estimators 

What are good properties of an estimator? 
 
- Efficient: estimate close to true value with most sets of data random data samples 
- Unbiased: on average (over possible data samples) it gives the true value 

The estimator 𝜃  is unbiased for 𝜃 if 𝐸 𝜃 = 𝜃 for all values of 𝜃. 

𝑃(𝜃 ) 

[distribution of 
Maximum-
likelihood 
𝜃 over all possible 
random samples] 
 



1 2 3

0% 0%0%

Estimators 
 
I want to estimate the mean IQ (measured by a 
standard test) of all adults in Britain, by averaging 
the test results of a sample of people. 
Which of the following samples is likely to give 
closest to an unbiased estimator? 

1. 100 randomly selected University of 
Sussex students 

2. The first two adults that answer the 
phone when I start dialling random 
numbers 

3. The people who respond to a 
national newspaper advert asking for 
volunteers 

Countdown  

30  



Result: 𝜇 = 𝑋   is an unbiased estimator of 𝜇. 

𝑋 =
1

𝑛
𝑋1 + ⋯ + 𝑋𝑛 = 𝜇 

Result: 𝜎2  is a biased estimator of σ2 

𝜎2 =
𝑛 − 1

𝑛
𝜎2 [proof in notes] 



Example 

Let say true (population) distribution 𝜇 = 0, 𝜎 = 1 (which we don’t know!) , 
 and 𝑋 ∼ 𝑁 𝜇, 𝜎   

We collect three samples giving 
 
   

0.8622     0.3188    -1.3077 

Given this data we want to estimate 𝜎 and 𝜇 

Mean:  𝑋 =
0.8622+0.3188−1.3077

3
= −0.0422 

 

Variance: 𝜎2 = 
1

𝑛
 𝑋𝑖 − 𝑋 2 =𝑛

𝑖=1
0.90442+0.36102  −1.26552

3
=0.8499 

But if we knew the true mean we would have got 

1

𝑛
 𝑋𝑖 − 0 2 =𝑛

𝑖=1
0.74342+0.10162  −1.71012

3
= 0.8517 

Sample mean is closer to the middle of the samples than the  

population mean ⇒ 𝜎2  underestimates variance on average 

i.e. if we collected lots of sets of three samples, 𝜎2   would not average to the right answer: it is biased 



Sample variance 
  

Since 𝜎2   is a biased estimator of σ2 it is common to use the unbiased estimator of the 
variance, often called the sample variance: 
  

𝑠2 =
𝑛

𝑛 − 1
𝜎2  

 

=
𝑛

𝑛 − 1

1

𝑛
 𝑋𝑖 − 𝑋 2  

=
1

𝑛 − 1
 (𝑋𝑖

2 − 𝑋 2) 

=
 𝑋𝑖

2
𝑖 − 𝑛𝑋 2

𝑛 − 1
 



Why the 𝒏 − 𝟏? 

 - Because the mean is estimated from the data, effectively only 𝑛 − 1  degrees 
of freedom left to estimate the scatter about the mean 

- Using the mean squared distance from the sample mean is smaller than the 
scatter about the true mean, because the sample mean is defined to be in the 

middle of the samples in hand. 
𝑛

𝑛−1
 corrects for this. 

𝑠2 =
1

𝑛 − 1
 (𝑋𝑖

2 − 𝑋 2) 



For frequency data, where 𝑓𝑖 is the frequency of the class with midpoint 𝑥𝑖 (i = 1, 2, ..., m): 

  

𝑠2 =
𝑓1 𝑥1 − 𝑥 2 + 𝑓2 𝑥2 − 𝑥 2 + ⋯ + 𝑓𝑚 𝑥𝑚 − 𝑥 2

𝑛 − 1
=

1

𝑛 − 1
 𝑓𝑖 𝑥𝑖 − 𝑥 2

𝑚

𝑖=1

 

  

 =
1

𝑛−1
 𝑓𝑖𝑥𝑖

2𝑚
𝑖=1 − 𝑛𝑥 2    (where 𝑛 =  𝑓𝑖

𝑚
𝑖=1 ) 

Standard Deviation:  square root of the sample variance 𝑠 = sample variance.  

𝑠2 =
 𝑋𝑖

2
𝑖 − 𝑛𝑋 2

𝑛 − 1
 

Sample variance is 



1 2 3 4 5

0% 0% 0%0%0%

Sample variance 
 
A sample of three random batteries 
had lifetimes of 2, 6 and 4 hours.  
What is the sample variance of the 
lifetime?  

Sample Variance: 
 

𝑠2 =
 𝑋𝑖

2
𝑖 − 𝑛𝑋 2

𝑛 − 1
 

1. 4 

2. 8/3 

3. 2 

4. 22 

5. 3 

Countdown  

60  



Sample variance 
 
A sample of three random batteries 
had lifetimes of 2, 6 and 4 hours.  
What is the sample variance of the 
lifetime?  

Want 𝑠2 =
 𝑋𝑖

2
𝑖 −𝑛𝑋 2

𝑛−1
 with 𝑛 = 3  

 𝑋𝑖
2

𝑖

= 22 + 62 + 42 = 56 

𝑋 =
2 + 6 + 4

3
= 4 

⇒ 𝑠2 =
56 − 3 × 42

2
= 4 hours2 



Percentiles and the interquartile range 
  
The kth percentile is the value corresponding 
 to cumulative frequency of k/100 
 

0.02 percentile 



The interquartile range of a set of data is the 
difference between the third quartile and the 
first quartile 
 
It is the range within which the "middle half" 
of the data lie, and so is a measure of spread 
which is not too sensitive to one or two 
outliers. 

A quartile corresponds to 25% of the cumulative frequency 
 -2nd quartile corresponds 50%, 3rd quartile corresponds to 75% 

1st  quartile 

3rd  quartile 

2nd   quartile 

Interquartile range 



Confidence Intervals 

Some interval we are “pretty sure” a parameter lies. 

Normal data, variance known (or large sample so 𝜎 ≈ 𝑠) 
  
Random sample 𝑋1, 𝑋2, … 𝑋𝑛 from 𝑁 𝜇, 𝜎2 , where 𝜎2 is known but 𝜇 is 
unknown.  
 
We want a confidence interval for 𝜇. 

Reminder: 𝑋 ∼ 𝑁(𝜇,
𝜎2

𝑛
) 

 

P=0.025 
P=0.025 

With probability 0.95, a Normal random 
variables lies within 1.96 standard deviations 
of the mean. 

Confidence Interval for the mean 

95% of the time expect 𝑋  in 𝜇 ± 1.96
𝜎2

𝑛
 



What we want is a confidence interval for 𝜇 given 𝑋 . 

𝑃 𝜇 𝑋  ) =
𝑃 𝑋  𝜇 𝑃 𝜇

𝑃 𝑋  
 Bayes’ theorem 

If the prior on μ is constant, then 𝑃 𝜇 𝑋  ) ∝ 𝑃 𝑋 𝜇 )   

A 95% confidence interval for 𝜇 if we measure a sample mean 𝑋  and already know 𝜎2 

is  𝑋 − 1.96
𝜎2

𝑛
  to 𝑋 + 1.96

𝜎2

𝑛
.  

Given we know 𝜇,  95% of the time we expect 𝑋  in 𝜇 ± 1.96
𝜎2

𝑛
 

Now we measure 𝑋  and want to infer a confidence interval for the unknown 𝜇 

⇒ 𝑃 𝜇 𝑋  ) is also a Normal distribution with mean 𝑋   and the same standard deviation 

⇒ 95% confidence interval for 𝜇 is 𝑋 ± 1.96
𝜎2

𝑛
 

Frequency interpretation: If we were to measure a large number of different data samples, 
then on average 95% of the confidence intervals we computed would contain the true mean. 



1 2 3 4

0% 0%0%0%

Confidence interval interpretation 
 
During component manufacture, a random sample of 
500 are weighed each day, and each day a 95% 
confidence interval is calculated for the mean weight 𝜇 
of the components. On the first day we obtain a 
confidence interval  for the mean weight of 
0.105 ± 0.003 Kg. Which of the following are correct 

on average if the (unknown) mean weight 𝜇 and (known) 
standard deviation 𝜎 remain constant on different days? 
 
(can click one or two choices) 

 
1. On 95% of days, the mean weight is in 

the range 0.105 ± 0.003 Kg 

2. On 5% of days the calculated confidence 
interval does not contain 𝜇 

3. 95% of the components have weights in 
the range 0.105 ± 0.003 Kg 

4. 5% of the sample means (mid-points of 
the confidence intervals) do not lie in the 
range 0.105 ± 0.003 Kg 

Countdown  

60  



Confidence interval interpretation 
 
During component manufacture, a random sample of 
500 are weighed each day, and each day a 95% 
confidence interval is calculated for the mean weight 𝜇 
of the components. On the first day we obtain a 
confidence interval  for the mean weight of 
0.105 ± 0.003 Kg. Which of the following are correct 

on average if the (unknown) mean weight 𝜇 and (known) 
standard deviation 𝜎 remain constant on different days? 
 
 

 𝑋 ∼ 𝑁 𝜇,
𝜎2

𝑛
, where 1.96

𝜎2

𝑛
= 0.003 

Every day we get a different sample, so different 𝑋 .  

Day 1:   𝑋 = 0.105 
Day 2:   𝑋 = 0.104 
Day 3:   𝑋 = 0.106 
Day 4:   𝑋 = 0.103 
… 

e.g.  
Confidence interval 

0.105 ± 0.003 
0.104 ± 0.003 
0.106 ± 0.003 
0.103 ± 0.003 

… 

95% of the time, 𝑋  is in 𝜇 ± 0.003 ⇒ 5% of the time 𝑋  is not in 𝜇 ± 0.003  

⇒5% of the time 𝜇 is not in 𝑋 ± 0.003 95% of the time, 𝜇 is in X ± 0.003 

⇒On 5% of days the calculated confidence interval does not contain 𝜇 



On 95% of days, the mean weight is in the range 0.105 ± 0.003 Kg 

5% of the sample means (mid-points of the confidence intervals) do not lie in the range 
0.105 ± 0.003 Kg 

95% of the components have weights in the range 0.105 ± 0.003 Kg 

Other answers? 

NO – the confidence interval is for the mean weight, not individual weights 
 
 95% of components have weights (if Normal) in the much wider range 𝜇 ± 1.96𝜎 Kg 

Confidence interval for the mean weight is 𝑋 ± 1.96
𝜎2

𝑛
Kg 

NO – Mid points of the confidence intervals are 𝑋 .  
5% of the time 𝑋  does not lie in 𝜇 ± 0.003 Kg 
Statement would only be true if on the first day we got 𝑋 = 𝜇, which has negligible probability  

NO - the mean weight 𝜇 is assumed to be a constant.  
It is either in the range or it isn’t – if true for one day it will be true for all days 



A 100 1 − 𝑝 % confidence interval for 𝜇 if we measure a sample mean 𝑋  and 

already know 𝜎2 is 𝑋 ± 𝑧
𝜎2

𝑛
 , where 𝑄 𝑧 = 1 − 𝑝/2 

In general can use any confidence level, not just 95%. 

95% confidence level has 5% in the tails, i.e. p=0.05 in the tails. 

In general to have probability 𝑝 in the tails; for two tail, 𝑝/2 in each tail: 

p/2 
p/2 

Q 

E.g. for a 99% confidence interval, we would want 𝑄 𝑧 = 0.995. 



Two tail versus one tail 
  
Does the distribution have two small tails or one? Or are we only interested in upper 
or lower limits? 

If the distribution is one sided, or we want upper or lower limits, a one tail interval may 
be more appropriate. 

P=0.05 

95% One tail 

P=0.025 
P=0.025 

95% Two tail 



Example 
 
You are responsible for calculating average extra-
urban fuel efficiency figures for new cars. You test 
a sample of 100 cars, and find a sample mean of 
𝑋 = 55.40mpg. The standard deviation is 
𝜎 = 1.2 mpg. What is the 95% confidence 
interval for the average fuel efficiency? 

Answer: 

Sample size if 𝑛 = 100 and 95% confidence interval is  𝑋 ± 1.96
𝜎2

𝑛
.  

⇒ 55.4 ± 1.96
1.22

100
= 55.4 ± 0.235 

i.e. mean 𝜇 in 55.165 to 55.63 mpg at 95% confidence 



1 2

0%0%

Confidence interval 
 

Given the confidence interval just constructed, it is 
correct to say that approximately 95% of new cars 
will have efficiencies between 55.165 and 55.63 
mpg? 

Question  from Derek Bruff 

NO: 𝜎 = 1.2mpg given in the question is the standard 
deviation of the individual car efficiencies (i.e. expect 
new cars in a range ±1.96𝜎). The confidence interval 
we calculated is the range we expect the mean 
efficiency to lie in (much smaller range). 

1. YES 

2. NO 

Countdown  

30  



Example: Polling 
 
A sample of 1000 random voters were polled, with 350 saying they will vote for the 
Conservatives and 650 saying another party. What is the 95% confidence interval for 
the Conservative share of the vote? 

Answer: this is Binomial data, but large 𝑛 = 1000 so can approximate as Normal 

𝜎2 = 𝑛𝑝 1 − 𝑝 ≈ 1000 × 0.35 × 1 − 0.35 = 227.5 

Random variable 𝑋 is the number voting Conservative, 𝑋 ∼ 𝑁(𝜇, 𝜎2) 

Take variance from the Binomial result with 𝑝 ≈
350

1000
= 0.35 

⇒ 𝜎 = 227.5 ≈ 15.1 

95% confidence interval for the total votes is 
 

350 ±  1.96𝜎 = 350 ± 1.96 × 15.1 = 350 ± 29.6 

⇒ 95% confidence interval for the fraction of the votes is 

350 ± 29.6

1000
≈ 0.35 ± 0.03 i.e. ±3% confidence interval 



Example – variance unknown 
 
A large number of steel plates will be used to 
build a ship. A sample of ten are tested and found 
to have sample mean 𝑋 = 2.13kg and sample 
variance 𝑠2 =  0.25 kg 2. What is the 95% 
confidence interval for the mean weight 𝜇?  

Reminder: 
 

Sample Variance:  𝑠2 =
 𝑋𝑖

2
𝑖 −𝑛𝑋 2

𝑛−1
 



Normal data, variance unknown 
  
Random sample 𝑋1, 𝑋2, … 𝑋𝑛 from 𝑁 𝜇, 𝜎2 , where 𝜎2and 𝜇 are both unknown.  
 
Want a confidence interval for 𝜇, using observed sample mean and variance. 

When we know the variance: use 𝑧 = 
𝑋 −𝜇

𝜎/ 𝑛
 which is normally distributed 

But don’t know 𝜎2, so have to use sample estimate 𝑠2 

When we don’t know the variance: use 𝑡 =
𝑋 −𝜇

𝑠/ 𝑛
 which has a t-distribution  

(with 𝑛 − 1 d.o.f)  

Sometimes more fully as “Student’s t-distribution” 

Wikipedia 

Remember: 𝑋 ∼ 𝑁 𝜇,
𝜎2

𝑛
 



𝜈 = 𝑛 − 1 = 1 𝜈 = 𝑛 − 1 = 5 𝜈 = 𝑛 − 1 = 50 

Normal 

t-distribution 

For large 𝑛 the t-distribution tends to the Normal 
 - in general broader tails 



Confidence Intervals for the mean 

If 𝜎2 is known, confidence interval for 𝜇 is 𝑋 − 𝑧
𝜎2

𝑛
  to 𝑋 + 𝑧

𝜎2

𝑛
, where 𝑧 

is obtained from Normal tables (z=1.96 for two-tailed 95% confidence limit). 

If 𝜎2 is unknown, we need to make two changes: 
 

(i) Estimate 𝜎2 by 𝑠2, the sample variance;  

(ii) replace z by 𝑡𝑛−1, the value obtained from t-tables, 

The confidence interval for 𝜇 if we measure a sample mean 𝑋  and 

sample variance 𝑠2 is: 𝑋 − 𝑡𝑛−1
𝑠2

𝑛
  to 𝑋 + 𝑡𝑛−1

𝑠2

𝑛
.  



t-tables 

give 𝑡𝜈 for different values Q of the cumulative Student's t-distributions, and 
for different values of 𝜈 

𝑡𝜈   

Q 

𝑄(𝑡𝜈) =   𝑓𝜈 𝑡 𝑑𝑡
𝑡𝜈

−∞

 

The parameter 𝜈 is called the 
number of degrees of 
freedom.  
 
(when the mean and 
variance are unknown, there 
are 𝑛 − 1 degrees of 
freedom to estimate the 
variance) 



𝑡𝜈   

Q 

For a 95% confidence interval, we want the 
middle 95% region, so Q = 0.975  
(0.05/2=0.025 in both tails). 

Similarly, for a 99% confidence interval, we 
would want Q = 0.995. 

Table on other side of Normal table handout 



t-distribution example: 
 
A large number of steel plates will be used to 
build a ship. A sample of ten are tested and 
found to have sample mean 𝑋 = 2.13kg and 
sample variance 𝑠2 =  0.25 kg 2. What is 
the 95% confidence interval for the mean 
weight 𝜇?  
 

From t-tables, 𝜈 = 𝑛 − 1 = 9 for Q = 0.975  

Answer: 

95% confidence interval for 𝜇 is:  

𝜇 = 𝑋 ± 𝑡𝑛−1

𝑠2

𝑛
 

 
    

i.e. 1.95 to 2.31 

 𝑡9 = 2.2622. 

⇒ 𝜇 = 2.13 ± 2.2622
0.252

10
= 2.13 ± 0.18 kg  



1 2 3 4

0% 0%0%0%

Confidence interval width 
 

We constructed a 95% confidence interval for the mean 
using a random sample of size n = 10 with sample mean 
𝑋 = 2.13kg . Which of the following conditions would 
NOT probably lead to a narrower confidence interval? 

Question  adapted from  
Derek Bruff 

1. If you decreased your confidence 
level  

2. If you increased your sample size  

3. If the sample mean was smaller 

4. If the population standard 
deviation was smaller 

Countdown  

30  



95% confidence interval for 𝜇 is:𝜇 = 𝑋 ± 𝑡𝑛−1
𝑠2

𝑛
; width is  2𝑡𝑛−1

𝑠2

𝑛
 

Confidence interval width 
 

We constructed a 95% confidence interval for the mean 
using a random sample of size n = 10 with sample mean 
𝑋 = 2.13kg . Which of the following conditions would 
NOT probably lead to a narrower confidence interval? 

Decrease your confidence level?  

⇒ larger tail ⇒ smaller 𝑡𝜈 ⇒ smaller confidence interval 

Increase your sample size? 

Smaller sample mean? 

Smaller population standard deviation? 

⇒ 𝑛 larger ⇒ smaller confidence interval (
𝑠2

𝑛
 and 𝑡𝑛−1 both likely to be smaller) 

⇒ 𝑋  smaller ⇒ just changes mid-point, not width  

⇒ 𝑠2 likely to be smaller ⇒ smaller confidence interval 



Sample size 

How many random samples do you need to reach  desired level of precision? 

For example, for Normal data, confidence interval for 𝜇 is 𝑋 ± 𝑡𝑛−1
𝑠2

𝑛
.   

Suppose we want to estimate 𝜇 to within ±𝛿, where 𝛿 (and the degree of 
confidence) is given. 

⇒ 𝑛 =
𝑡𝑛−1

2 𝑠2

𝛿2
 

Want 𝛿 = 𝑡𝑛−1

𝑠2

𝑛
 

Need: - Estimate of 𝑠2 (e.g. previous experiments) 

- Estimate of 𝑡𝑛−1. This depends on n, but not very strongly. 

e.g. take  𝑡𝑛−1 = 2.1 for  95% confidence. 

Rule of thumb: for 95% confidence, choose 𝑛 =
2.12×Estimate of variance

δ2   


