Cosmic concordance, tensions and lensing

Antony Lewis
http://cosmologist.info/

Evolution in the standard cosmology

Hu & White, Sci. Am., 290 44 (2004)

Contents of the Universe today

Define and test perturbatively-FRW ΛCDM model:

- Photons (CMB temperature today ~ 2.7255 K)
- 3 active neutrinos, assuming minimal mass hierarchy with $\Sigma m_{
 u} = 0.06$ eV
- Standard model baryons (taken to include electrons etc), density $\Omega_b h^2$
- Cold (pressureless) non-interacting and stable matter (CDM), density $\Omega_c h^2$
- Cosmological constant, giving a flat universe with $\Omega_K=0$
- Reionization parameterized by a single effective optical depth au
- Gaussian adiabatic primordial curvature perturbations with power spectrum $P_R = A_s \left(\frac{k}{k_*}\right)^{n_s-1}$ Remaining free parameter is $H_0 = 100h \text{ km s}^{-1}\text{Mpc}^{-1}$ (or Ω_A , Ω_m , θ_* , ...)

Perturbation evolution

Observed CMB power spectrum

Observations

 $(10^{-5} perturbations)$

Assume model, constrain parameters - test constancy with other probes

Linear perturbation theory very accurate: given a model, can calculate to high precision

Cosmic Microwave Background power spectrum fits to ΛCDM

z = 0

CMB ($z \sim 1060$)

z = 0

CMB ($z \sim 1060$)

Λ CDM baryon density at fixed θ_* , $\Omega_m h^2$

(baryons deepen overdensity compressions: enhance odd peaks of spectrum)

Odd/even height ratio distinctive and quite robust: $\Omega_h h^2 = 0.0224 \pm 0.0002$

Consistency with standard Big-Bang Nucleosynthesis

COBE measured $T_{\rm CMB} \sim 2.7255 \, K$

BUT: Lithium problem remains around 5σ

Measured: $^{7}\text{Li/H} = (1.58 \pm 0.35) \times 10^{-10}$

arXiv: 1505.01076

Prediction: $^{7}\text{Li/H} = 4.5 \times 10^{-10}$

arXiv: 1806.06209

Λ CDM matter density at fixed θ_* , $\Omega_b h^2$

(more matter lowers amplitude for modes that enter horizon in matter domination)

Can be partly compensated by changing initial power A_s , n_s and foregrounds. But detailed shape is still quite distinctive and robust:

$$\Omega_m h^2 = 0.143 \pm 0.001$$

Hot big bang

⇒ comoving sound horizon:

$$r_{\rm S} \approx \int_0^{t_*} \frac{c_{\rm S} dt}{a} \sim (144.4 \pm 0.3) \,{\rm Mpc}$$

 $heta_*$

Hot big bang

 r_s , $\theta_* \Rightarrow$ Comoving radial distance $\chi_* \sim (13.87 \pm 0.03) \text{ Gpc}$

$$\chi_* = \int \left(\frac{cdt}{a}\right)$$

$$= \int \left(\frac{da}{a^2 H}\right) \approx \int \frac{da}{\sqrt{a\Omega_{\rm m} H_0^2 + a^4 \Omega_{\Lambda} H_0^2}}$$

$$\Omega_{\Lambda}H_0^2 = H_0^2 - \Omega_m H_0^2$$
 and know $\Omega_m h^2 \Rightarrow H_0$

 $heta_*$

 χ_*

$$\Rightarrow H_0 = (67.3 \pm 0.6) \text{ km s}^{-1} \text{Mpc}^{-1}$$
(Planck, confirmed by ACT)

CMB and BAO consistency in ΛCDM

z = 0

BAO ($z \sim 0.5$)

CMB ($z \sim 1060$)

Baryon Acoustic Oscillation (BAO) concordance

Supernovae constrain redshift evolution (as standardizable candles, measure d_L)

H_0 from local distance ladder

https://www.spacetelescope.org/news/heic1611/

Parallax+cepheids+SN

$$H_0 = 74.03 \pm 1.42 \text{ km s}^{-1} \text{Mpc}^{-1}$$

Riess et al. arXiv: 1903.07603

The Hubble discrepancy assuming $\Lambda ext{CDM}$ and Planck sound horizon r_d

A $4.4\sigma \sim 10\%$ discrepancy between local and CMB-inferred Λ CDM H_0 ?

Model fits

LCDM best-fits:
$$H_0 = 67.3$$
 ($n_s = 0.966$, $\Omega_m = 0.32$, $\Omega_m h^2 = 0.143$) vs. best fit for $H_0 = 73.0$ ($n_s = 0.995$, $\Omega_m = 0.25$, $\Omega_m h^2 = 0.132$)

Other local Hubble parameter measurements

Forward distance ladder

Tip of the red giant branch

$$H_0 = 69.8 \pm 1.9 \text{ km s}^{-1} \text{Mpc}^{-1}$$

Freedman et al. arXiv:1907.05922, 2002.01550

+ other several results using other local calibrators, all giving high H_0

Planck Lensing Reconstruction

Planck Lensing 2018 arXiv:1807.06210

Lead by Julien Carron at Sussex

Lensing reconstruction (concept)

Measure spatial variations in magnification and shear

Use assumed unlensed spectrum, and unlensed statistical isotropy

Map of the gradient-mode lensing

Planck CMB lensing parameters

CMB lensing + BAO inverse distance ladder (with $\Omega_b h^2$ prior from abundance measurements)

$$H_0 = 67.9^{+1.2}_{-1.3} \text{ km s}^{-1} \text{Mpc}^{-1},$$

$$\sigma_8 = 0.811 \pm 0.019,$$

$$\Omega_m = 0.303^{+0.016}_{-0.018},$$

$$68 \%, \text{ lensing+BAO}$$

Also adding robust CMB θ_* constraint: $H_0 = 68.0 \pm 0.7$ (68 %, lensing+BAO+ θ_*)

("Lensing-only" priors: $\Omega_{\rm b} h^2 = 0.0222 \pm 0.0005$, $n_{\rm s} = 0.96 \pm 0.02$, 0.4 < h < 1)

Independent ACDM inverse distance ladder is also consistent with Planck

Strong Lensing

Lens modelling etc..

$$D_{\Delta t} \equiv (1 + z_{\rm d}) \frac{D_{\rm d} D_{\rm s}}{D_{\rm ds}}$$

H0LiCOW: $H_0 = 73.3^{+1.7}_{-1.8} \text{ km s}^{-1} \text{Mpc}^{-1}$

Wong et al. arXiv:1907.04869 (some cosmology dependence)

Independent of CMB and local distance ladder and mostly redshift $z > \sim 0.1$

⇒ tension with CMB independent of very local environment

Galaxy weak gravitational lensing – cosmic shear

Potentially clean probe of total matter perturbations and geometry **But**, non-linearities, redshift uncertainties, intrinsic alignment, shape biases...

Galaxy and CMB lensing complementary, tighter joint constraints

DES and Planck lensing very consistent

Other galaxy lensing results

Asgari et al. arXiv: 2007.15633

DES+KiDs significant tension with Planck on $S_8 = \sigma_8 \left(\Omega_m / 0.3\right)^{0.5}$

Galaxy lensing + galaxy counts also depends on galaxy bias parameters

Marginally consistent/moderate tension with Planck

Redshift Distortions

Currently no compelling evidence for deviations from Planck ΛCDM in LSS observations.

Possible solutions to the H_0 tensions

Biases in data or underestimated error bars

- inverse distance ladder and CMB consistent ⇒ both CMB and BAO being wrong?
- Local H_0 and strong lensing independent; multiple local distance ladders but Feedman et al result lower and strong lensing errors relatively large

New physics prior to recombination:

- decrease sound horizon r_d : BAO and Planck H_0 both shift proportionately
- other changes that affect relevant inferred parameters (e.g. $\Omega_m h^2$)

New physics at lower redshift/dark energy/modified gravity

- but w > -1 only makes H_0 from Planck *lower*
- have to fit BAO and $H(z)/H_0$ from supernovae (or find problem with supernovae)

New physics/very unusual conditions in our local neighbourhood

- strong lensing results then in tension?

Some combination of the above

New early universe physics – decrease sound horizon r_d by 0(10%) e.g. increase expansion rate, decrease sound speed, shift recombination, ...

But, simple models e.g. extra relativistic degrees of freedom ($N_{\rm eff} \neq 3.046$) not favoured by Planck spectra (and disfavoured by BBN D/H)

Different models change the CMB spectra in distinctly different ways e.g. via changes to matter-radiation equality, damping scale, peak phases

Difficult but not impossible to fit current data e.g. trade changes from new physics with changes in $\Omega_c h^2$, $\Omega_b h^2$, A_s , n_s , ...)

⇒ Almost impossible to *also* fit ΛCDM polarization to cosmic variance

⇒ new "easily" detectable EE/TE signal that does not fit ΛCDM

(note: if new physics is the solution, current Λ CDM measurements of parameters likely to be significantly wrong, e.g. significant implications for inflation n_s)

- + ActPol, SPTpol (now)
- + CMB-S4 (beyond)

If $H_0 > 71 \text{ km s}^{-1} \text{Mpc}^{-1}$, new pre-recombination physics likely detectable at $> 5\sigma$ soon

Distinct physical models give different precision predictions

High resolution/sensitivity polarization: precision small-scale EE, TE, TT power spectrum

Simons Observatory CMB Lensing forecast

CMB lensing constraints will dramatically improve ... and completely different systematics to galaxy lensing

+ new galaxy lensing from LSST, EUCLID, etc.

Conclusions

ΛCDM concordance between CMB, BAO, SN, CMB lensing, BBN (except lithium)

... and BAO and CMB are the cleanest and most robust probes

H_0 tension 1-5+ σ

- Complex indirect measurements, but multiple independent or semi-independent probes
- New pre-recombination physics at 5-10 % level "easily" detectable soon with CMB polarization
 - can test *reason for* discrepancy ⇒ distinguish new physics

No models currently attempted are compelling or great fits.

- and why does it look in so many ways just like ΛCDM?

CMB lensing and galaxy lensing complementary and very different systematics

Some tensions in late-time σ_8 measurements, but complex and evolving

- More powerful LSS measurements soon could give clearer indication (unless statistical power all soaked up by nuisance parameters in the complex modelling)

Cobaya: Code for Bayesian Analysis

Jesus Torrado, AL

arXiv:2005.05290

Python parameter sampling framework: likelihoods -> parameter MC samples

Optimizations to exploit different speeds of multiple dependent theory/likelihood modules each with multiple nuisance parameters

https://github.com/CobayaSampler/cobaya

https://cobaya.readthedocs.io/

GetDist 1.0: Python Monte Carlo Sample Analyser

https://getdist.readthedocs.io (arXiv:1910.13970)

+ interactive GUI, KDE, PCA, convergence, latex, tables