Planck 2018

Cosmology & Parameters

Antony Lewis

http://cosmologist.info/

on behalf of the Planck Collaboration.

First batch

http://www.cosmos.esa.int/web/planck/publications

- Planck 2018 results. I. Overview, and the cosmological legacy of Planck
- Planck 2018 results. II. Low Frequency Instrument data processing
- Planck 2018 results. III. High Frequency Instrument data processing
- Planck 2018 results. IV. CMB and foreground extraction
- Planck 2018 results. VI. Cosmological parameters
- Planck 2018 results. VIII. Gravitational lensing
- Planck 2018 results. X. Constraints on inflation.
- Planck 2018 results. XI. Polarized dust foregrounds (submitted)
- Planck 2018 results. XII. Galactic astrophysics using polarized dust emission

Coming later

Planck 2018 results. V. Legacy Power Spectra and Likelihoods

Planck 2018 results. VII. Isotropy and statistics

Planck 2018 results. IX. Constraints on primordial non-Gaussianity

⇒ Only lensing likelihoods released today. CMB likelihoods with likelihood paper.

2018:
$$\tau = 0.0506 \pm 0.0086$$
 (68 %, lowE).

2015: $\tau = 0.067 \pm 0.022$

2016: $\tau = 0.055 \pm 0.009$

LCDM* parameters: temperature + low-ℓ polarization

^{*} Flat, power-law scalar adiabatic perturbations, 3 active neutrinos, $m_{\nu}=0.06~{
m eV}$

LCDM parameters: all temperature + polarization

CMB lensing reconstruction

 $8 \le L \le 400$: "Conservative" lensing likelihood

CMB lensing best measures $\sim \sigma_8 \Omega_m^{0.25}$ = 0.589 \pm 0.020.

Baseline TT,TE,EE+lowE+lensing LCDM parameters

Parameter	Plik best fit	Plik[1]	CamSpec [2]	$([2] - [1])/\sigma_1$	Combined
$\Omega_{ m b} h^2 \ldots $	0.022383	0.02237 ± 0.00015	0.02229 ± 0.00015	-0.5	0.02233 ± 0.00015
$\Omega_{ m c}h^2$	0.12011	0.1200 ± 0.0012	0.1197 ± 0.0012	-0.3	0.1198 ± 0.0012
$100\theta_{\mathrm{MC}}$	1.040909	1.04092 ± 0.00031	1.04087 ± 0.00031	-0.2	1.04089 ± 0.00031
au	0.0543	0.0544 ± 0.0073	$0.0536^{+0.0069}_{-0.0077}$	-0.1	0.0540 ± 0.0074
$ln(10^{10}A_s)$	3.0448	3.044 ± 0.014	3.041 ± 0.015	-0.3	3.043 ± 0.014
$n_{\rm s}$	0.96605	0.9649 ± 0.0042	0.9656 ± 0.0042	+0.2	0.9652 ± 0.0042
$\Omega_{\mathrm{m}}h^2$	0.14314	0.1430 ± 0.0011	0.1426 ± 0.0011	-0.3	0.1428 ± 0.0011
H_0 [km s ⁻¹ Mpc ⁻¹]	67.32	67.36 ± 0.54	67.39 ± 0.54	+0.1	67.37 ± 0.54
$\Omega_{ m m}$	0.3158	0.3153 ± 0.0073	0.3142 ± 0.0074	-0.2	0.3147 ± 0.0074
Age [Gyr]	13.7971	13.797 ± 0.023	13.805 ± 0.023	+0.4	13.801 ± 0.024
$\sigma_8\dots\dots$	0.8120	0.8111 ± 0.0060	0.8091 ± 0.0060	-0.3	0.8101 ± 0.0061
$S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5} . .$	0.8331	0.832 ± 0.013	0.828 ± 0.013	-0.3	0.830 ± 0.013
Zre	7.68	7.67 ± 0.73	7.61 ± 0.75	-0.1	7.64 ± 0.74
$100\theta_*$	1.041085	1.04110 ± 0.00031	1.04106 ± 0.00031	-0.1	1.04108 ± 0.00031
$r_{\rm drag}$ [Mpc]	147.049	147.09 ± 0.26	147.26 ± 0.28	+0.6	147.18 ± 0.29

Baseline likelihood

Alternative likelihood

LCDM results robust to $\sim 0.5\sigma$ (where σ is small)

Is Planck+LCDM consistent with other astrophysical data?

z = 0

BAO ($z \sim 0.5$)

CMB ($z \sim 1060$)

today

 $\chi_* \sim 14000 \text{ Mpc}$

recombination

Hot big bang

 $100\theta_* = 1.04109 \pm 0.00030$

Planck TT,TE,EE+lowE+lensing (0.03% precision!)

 $heta_*$

LCDM, in BAO-like variables: $\left(\frac{r_{\rm drag}h}{\rm Mpc}\right)\left(\frac{\Omega_m}{0.3}\right)^{0.4}=101.056\pm0.036$

z = 0

BAO ($z \sim 0.5$)

CMB ($z \sim 1060$)

today

$$\theta_{\rm BAO} = r_d/D_M(z)$$

Line-of-sight BAO:

$$\delta z = \frac{\delta z}{\delta \chi} r_d = r_d H(z)$$

 $heta_*$

Hot big bang

Transverse and averaged BAO

Use BAO ≡ DR12+MGS+6DFGS (adding others would make little difference)

Supernovae

- Observe redshift and flux for different redshifts: $S(z) = \frac{L_{SN}}{4\pi d_L^2(z)}$
- Luminosity distance $d_L = (1+z)^2 D_A = (1+z)D_M$

•
$$D_M = \int \left(\frac{cdt}{a}\right) = \int \left(\frac{da}{a^2H}\right) \approx \frac{1}{H_0} \int \frac{da}{\sqrt{a\Omega_m + a^4(1 - \Omega_m)}}$$
 [late-time LCDM]

- \Rightarrow can measure H_0 only if you know L_{SN} ,
- \Rightarrow can measure Ω_m (+w, w_a) without knowing H_0 or $L_{\rm SN}$ (if assumed constant)

Supernovae: Pantheon (Scolnic et al) fits LCDM well (limits room for w_0 , w_a)

Hubble Parameter

Forward ladder measurement (SH0ES, Riess et al.); radial BAO with Planck LCDM $r_{\rm drag}$

Planck LCDM: $H_0 = (67.36 \pm 0.54) \text{ km/s/Mpc}$

Riess et al 2018b: $H_0 = (73.52 \pm 1.62)$ km/s/Mpc

 \Rightarrow 3.6 σ tenson

"Inverse distance ladder"

Redshift Distortions measure growth $\times \sigma_8$

Extensions to LCDM

 $r_{0.002} < 0.065$ (95 %, TT,TE,EE+lowE+lensing +BK14+BAO),

$$n_{\rm s} = 0.9670 \pm 0.0037$$
 at 1σ .

 $\sum m_{\nu} < 0.12 \text{ eV}$ (95 %, *Planck* TT,TE,EE+lowE +lensing+BAO).

 $N_{\text{eff}} = 2.99_{-0.33}^{+0.34}$ (95 %, TT,TE,EE+lowE+lensing +BAO).

Consistency with element abundance observations

Table 4. Constraints on 1-parameter extensions to the base-ΛCDM model for combinations of *Planck* power spectra, *Planck* lensing, and BAO (equivalent results using the CamSpec likelihood are given in Table A.2). Note that we quote 95 % limits here.

Parameter	TT+lowE	TT, TE, EE+lowE	TT, TE, EE+lowE+lensing	TT, TE, EE+lowE+lensing+BAO
Ω_K	$-0.056^{+0.044}_{-0.050}$	$-0.044^{+0.033}_{-0.034}$	$-0.011^{+0.013}_{-0.012}$	$0.0007^{+0.0037}_{-0.0037}$
$\Sigma m_{ u} [\mathrm{eV}] \ldots \ldots \ldots N_{\mathrm{eff}} \ldots \ldots \ldots \ldots$	$< 0.537 3.00^{+0.57}_{-0.53}$	$< 0.257 \ 2.92^{+0.36}_{-0.37}$	$< 0.241 \ 2.89^{+0.36}_{-0.38}$	$< 0.120 \ 2.99^{+0.34}_{-0.33}$
$Y_{\mathrm{P}} \dots $	$0.246^{+0.039}_{-0.041}$	$0.240^{+0.024}_{-0.025}$	$0.239^{+0.024}_{-0.025}$	$0.242^{+0.023}_{-0.024}$
$r_{0.002} \dots \dots \dots$	$-0.004^{+0.015}_{-0.015} < 0.102$	$-0.006^{+0.013}_{-0.013} < 0.107$	$-0.005^{+0.013}_{-0.013} < 0.101$	$-0.004^{+0.013}_{-0.013} < 0.106$
$w_0 \dots \dots$	$-1.56^{+0.60}_{-0.48}$	$-1.58^{+0.52}_{-0.41}$	$-1.57^{+0.50}_{-0.40}$	$-1.04^{+0.10}_{-0.10}$

Table 5. Constraints on standard cosmological parameters from *Planck* TT,TE,EE+lowE+lensing when the base- Λ CDM model is extended by varying additional parameters. The constraint on τ is also stable but not shown for brevity; however, we include H_0 (in km s⁻¹Mpc⁻¹) as a derived parameter (which is very poorly constrained from *Planck* alone in the Λ CDM+ w_0 extension). Here α_{-1} is a matter isocurvature amplitude parameter, following PCP15. All limits are 68 % in this table. The results assume standard BBN except when varying Y_P independently (which requires non-standard BBN). Varying A_L is not a physical model (see Sect. 6.2).

Parameter(s)	$\Omega_{ m b} h^2$	$\Omega_{ m c} h^2$	$100\theta_{\mathrm{MC}}$	H_0	$n_{ m s}$	$\ln(10^{10}A_{\rm s})$
Base ΛCDM	0.02237 ± 0.00015	0.1200 ± 0.0012	1.04092 ± 0.00031	67.36 ± 0.54	0.9649 ± 0.0042	3.044 ± 0.014
	0.02237 ± 0.00014	0.1199 ± 0.0012	1.04092 ± 0.00031	67.40 ± 0.54	0.9659 ± 0.0041	3.044 ± 0.014
$n_{\rm s}/{\rm d} \ln k \dots$	0.02240 ± 0.00015	0.1200 ± 0.0012	1.04092 ± 0.00031	67.36 ± 0.53	0.9641 ± 0.0044	3.047 ± 0.015
$n_{\rm s}/{\rm d} \ln k, r \ldots$	0.02243 ± 0.00015	0.1199 ± 0.0012	1.04093 ± 0.00030	67.44 ± 0.54	0.9647 ± 0.0044	3.049 ± 0.015
$^{2}n_{\rm s}/{\rm d}\ln k^{2}$, ${\rm d}n_{\rm s}/{\rm d}\ln k$.	0.02237 ± 0.00016	0.1202 ± 0.0012	1.04090 ± 0.00030	67.28 ± 0.56	0.9625 ± 0.0048	3.049 ± 0.015
V _{eff}	0.02224 ± 0.00022	0.1179 ± 0.0028	1.04116 ± 0.00043	66.3 ± 1.4	0.9589 ± 0.0084	3.036 ± 0.017
$V_{\rm eff}$, $dn_{\rm s}/d\ln k$	0.02216 ± 0.00022	0.1157 ± 0.0032	1.04144 ± 0.00048	65.2 ± 1.6	0.950 ± 0.011	3.034 ± 0.017
m_{ν}	0.02236 ± 0.00015	0.1201 ± 0.0013	1.04088 ± 0.00032	$67.1^{+1.2}_{-0.67}$	0.9647 ± 0.0043	3.046 ± 0.015
$M_{\nu}, N_{\text{eff}} \dots \dots$	0.02223 ± 0.00023	0.1180 ± 0.0029	1.04113 ± 0.00044	$66.0^{+1.8}_{-1.6}$	0.9587 ± 0.0086	3.038 ± 0.017
$n_{\nu,\mathrm{sterile}}^{\mathrm{eff}},N_{\mathrm{eff}}$	$0.02242^{+0.00014}_{-0.00016}$	$0.1200^{+0.0032}_{-0.0020}$	$1.04074^{+0.00033}_{-0.00029}$	$67.11^{+0.63}_{-0.79}$	$0.9652^{+0.0045}_{-0.0056}$	$3.050^{+0.014}_{-0.016}$
Z-1 · · · · · · · · · · · · · · · · · · ·	0.02238 ± 0.00015	0.1201 ± 0.0015	1.04087 ± 0.00043	67.30 ± 0.67	0.9645 ± 0.0061	3.045 ± 0.014
' ₀	0.02243 ± 0.00015	0.1193 ± 0.0012	1.04099 ± 0.00031		0.9666 ± 0.0041	3.038 ± 0.014
Ω_K	0.02249 ± 0.00016	0.1185 ± 0.0015	1.04107 ± 0.00032	$63.6^{+2.1}_{-2.3}$	0.9688 ± 0.0047	$3.030^{+0.017}_{-0.015}$
, . P	0.02230 ± 0.00020	0.1201 ± 0.0012	1.04067 ± 0.00055	67.19 ± 0.63	0.9621 ± 0.0070	3.042 ± 0.016
$N_{\rm P}, N_{\rm eff}$	0.02224 ± 0.00022	$0.1171^{+0.0042}_{-0.0049}$	1.0415 ± 0.0012	$66.0^{+1.7}_{-1.9}$	0.9589 ± 0.0085	3.036 ± 0.013
L	0.02251 ± 0.00017	0.1182 ± 0.0015	1.04110 ± 0.00032	68.16 ± 0.70	0.9696 ± 0.0048	$3.029^{+0.018}_{-0.016}$

Curiosities

 $A_{\rm L} = 1.243 \pm 0.096$ (68 %, *Planck* TT+lowE), $A_{\rm L} = 1.180 \pm 0.065$ (68 %, *Planck* TT,TE,EE+lowE), $\Delta \chi^2 = -9.7$

(Polarization unstable because of systematics/modelling uncertainties in polarization: only just above 2σ with CamSpec)

Physical models that give more lensing are probably not the answer.

A_L degeneracies

More lensing \Rightarrow lower third+ peak \Rightarrow higher n_s \Rightarrow lower large-scale power \Rightarrow better fit to low- ℓ data (plus offer effects)

 $A_L \sim 1.1$ preference from smoothing effect

 $A_L > 1.1$ preference driven by degeneracies

 $Var(d)/Var(d_{LCDM}) \sim 1.12$

Spatial Curvature

Ad hoc modified gravity

$$k^{2}\Psi = -\mu(a, k) 4\pi G a^{2} \left[\rho \Delta + 3(\rho + P)\sigma\right] \qquad \qquad \mu(z) = 1 + E_{11}\Omega_{\rm DE}(z);$$

$$k^{2} \left[\Phi - \eta(a, k)\Psi\right] = \mu(a, k) 12\pi G a^{2}(\rho + P)\sigma \qquad \qquad \eta(z) = 1 + E_{21}\Omega_{\rm DE}(z).$$

$$k^{2} \left[\Phi + \Psi \right] = -\Sigma(a, k) 4\pi G a^{2} \left[2\rho \Delta - 3(\rho + P)\sigma \right]$$

Low-ℓ vs high-ℓ in LCDM

Conclusions

- Planck parameters reliable, no major change since 2015
- Polarization now better understood (but not perfect; $\sim 0.5\sigma$ systematic uncertainty)
- Planck alone fits LCDM well: T, P + lensing all consistent
- Planck+LCDM consistent with BAO, SN, RSD, DES lensing
- Planck+LCDM moderate tension with DES joint probes
- Planck+LCDM in strong 3.6σ tension with H_0 from SH0ES Cannot just be problem with Planck (BAO+D/H+SN agree with Planck).
- Some curiosities (A_L , low-high features), but not more than $2\sigma 3\sigma$
- If new physics is the solution to tensions, new physics does not have large signal in CMB

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada.

planck

(USA), and

telescope reflectors provided in a

collaboration between ESA and a scientific Consortium led and funded by Denmark.

