Primordial and Doppler modulations with Planck

Planck 2013 results. XXIV. Planck 2013 results. XXVII

Antony Lewis On behalf of the Planck collaboration

http://cosmologist.info/

Outline

- Primordial modulations and power asymmetry
- τ_{NL} trispectrum
- Kinematic Doppler dipoles

Note: statistical anisotropy \equiv trispectrum

The closet non-Gaussianity of anisotropic Gaussian fluctuations

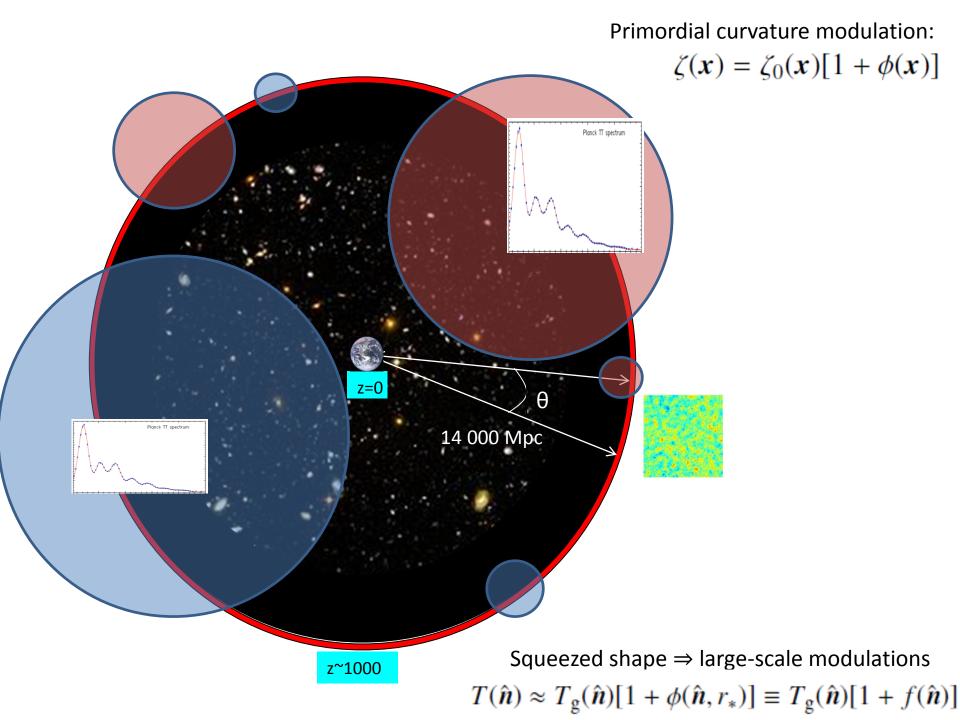
Pedro G. Ferreira¹ and João Magueijo² ⁽¹⁾Center for Particle Astrophysics, University of California, Berkeley CA 94720-7304, USA ⁽²⁾The Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, UK

In this paper we explore the connection between anisotropic Gaussian fluctuations and isotropic non-Gaussian fluctuations. We first set up a large angle framework for characterizing non-Gaussian fluctuations: large angle non-Gaussian spectra. We then consider anisotropic Gaussian fluctuations in two different situations. Firstly we look at anisotropic space-times and propose a prescription for superimposed Gaussian fluctuations; we argue against accidental symmetry in the fluctuations and that therefore the fluctuations should be anisotropic. We show how these fluctuations display previously known non-Gaussian effects both in the angular power spectrum and in non-Gaussian spectra. Secondly we consider the anisotropic Grischuk-Zel'dovich effect. We construct a flat space time with anisotropic, non-trivial topology and show how Gaussian fluctuations in such a spacetime look non-Gaussian. In particular we show how non-Gaussian spectra may probe superhorizon anisotropy.

arXiv:astro-ph/9704052v1 5 Apr 1997

$T \sim P(T|\Omega)$ is statistically anisotropic in direction Ω

 $\Rightarrow T \sim \int P(T, \Omega) d\Omega$ is statistically isotropic and non-Gaussian



e.g. local NG
$$\zeta(\mathbf{x}) = \zeta_0(\mathbf{x}) + \frac{3}{5} f_{\mathrm{NL}}(\zeta_0(\mathbf{x})^2 - \langle \zeta_0^2 \rangle)$$

Long + short modes: $\zeta_0 = \zeta_s + \zeta_l$

$$\zeta = \zeta_s \left(1 + \frac{3}{5} f_{\rm NL} \left[2\zeta_l + \zeta_s\right]\right) + \zeta_l \left(1 + \frac{3}{5} f_{\rm NL} \zeta_l\right) - \frac{3}{5} f_{\rm NL} \langle \zeta_0^2 \rangle$$
$$\approx \zeta_l + \zeta_s \left(1 + \frac{6 f_{\rm NL}}{5} \zeta_l\right).$$

i.e. modulated
$$\zeta \sim \zeta_s (1 + \phi)$$
 with $\phi = \frac{6f_{NL}}{5} \zeta_l$

Large-scale modulations \Rightarrow

CMB bispectrum
$$\sim \frac{6}{5} f_{NL} C_L^{T\zeta_*} (C_{l_2} + C_{l_3})$$

CMB trispectrum $\sim \left(\frac{6}{5} f_{NL}\right)^2 C_L^{\zeta_*\zeta_*} (C_{l_1} + C_{l_2}) (C_{l_3} + C_{l_4})$
 l_1
 l_2
 l_3
 l_2
 l_3
 l_1
 l_1
 l_1
 l_2
 l_3
 l_1
 l_1
 l_2
 l_3
 l_1
 l_1
 l_2
 l_3
 l_1
 l_2
 l_3
 l_1
 l_2
 l_3
 l_1
 l_2
 l_3
 l_1
 l_2
 l_1
 l_2
 l_3
 l_1
 l_1
 l_2
 l_3
 l_1
 l_2
 l_3
 l_1
 l_1
 l_2
 l_3
 l_3
 l_1
 l_2
 l_3
 l_1
 l_2
 l_3
 l_3
 l_1
 l_2
 l_3
 l_3
 l_1
 l_2
 l_3
 l_3
 l_3
 l_4
 l_3
 l_3
 l_4
 l_3
 l_3
 l_4
 l_3
 l_4
 l_2
 l_3
 l_3
 l_4
 l_3
 l_3
 l_4
 l_3
 l_3
 l_4
 l_3
 l_4
 l_3
 l_4
 l_3
 l_3
 l_4
 l_4
 l_3
 l_4
 l_3
 l_4
 l_3
 l_4
 l_4
 l_3
 l_4
 l_4
 l_3
 l_4
 l_4

1

Define τ_{NL} trispectrum by $\tau_{NL}(L) = \frac{C_L^f}{C_L^{\zeta_{\star}}}$ (almost all S/N at L < 10, half in dipole) Note $f \sim O(10^{-3}) \Rightarrow \tau_{NL} \sim 500$ $f = \frac{6f_{NL}}{5}\zeta_l$ $\tau_{NL}(L) = (6f_{NL}/5)^2$ $f = \frac{6f_{NL}}{5}\zeta_l + \chi$ $\tau_{NL}(L) \ge (6f_{NL}/5)^2$

Combined estimator for nearly scale-invariant modulation

$$\hat{\tau}_{\rm NL} \approx N^{-1} \sum_{L=L_{\rm min}}^{L_{\rm max}} \frac{2L+1}{L^2(L+1)^2} \frac{\hat{C}_L^f}{C_L^{\zeta_{\star}}}$$

(optimal to percent level)

Just need to reconstruct $f(\hat{\mathbf{n}})$ to find its power spectrum

QML estimator for f:

$$\tilde{h}_{lm}^f = \int d\Omega Y_{lm}^* \left[\sum_{l_1m_1}^{l_{\max}} \bar{\Theta}_{l_1m_1} Y_{l_1m_1} \right] \left[\sum_{l_2m_2}^{l_{\max}} C_{l_2} \bar{\Theta}_{l_2m_2} Y_{l_2m_2} \right]$$

Optimally filtered temperature

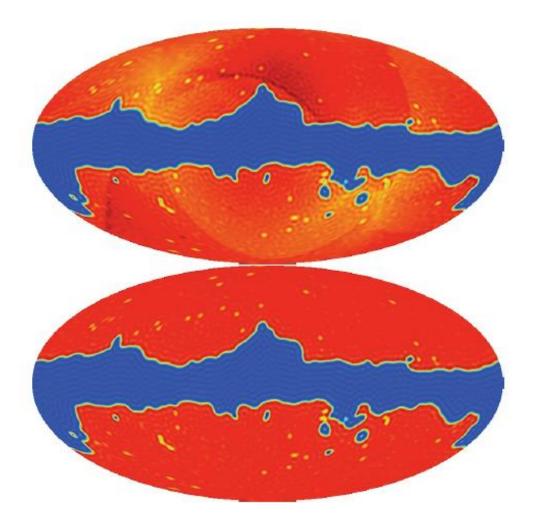
Pipeline almost identical to CMB lensing, but with different weight functions. General anisotropy estimator is

$$\hat{x}_{LM}[\bar{T}] = \frac{1}{2} N_L^{x\beta_{\nu}} \sum_{\ell_1 = \ell_{\min}}^{\ell_{\max}} \sum_{\ell_2 = \ell_{\min}}^{\ell_{\max}} \sum_{m_1, m_2} (-1)^M \begin{pmatrix} \ell_1 & \ell_2 & L \\ m_1 & m_2 & -M \end{pmatrix} W_{\ell_1 \ell_2 L}^{\hat{x}} \times \left(\bar{T}_{\ell_1 m_1} \bar{T}_{\ell_2 m_2} - \langle \bar{T}_{\ell_1 m_1} \bar{T}_{\ell_2 m_2} \rangle \right)$$
Mapping field

Hanson & Lewis 2009

(estimate from sims)

Modulation mean field: mainly noise + mask



143x143

143x217

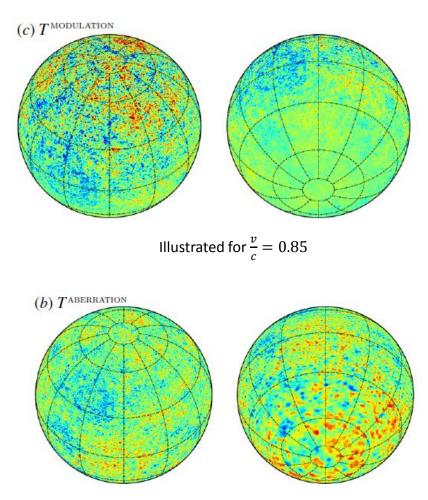
Avoids uncertainty in noise modelling (mask is well known)

Kinematic dipole signal

Modulation

$$\begin{split} \Delta \Theta(\hat{n}) &\rightarrow \left[1 + \hat{n} \cdot \boldsymbol{v} + T \frac{\mathrm{d}^2 I_{\nu}/\mathrm{d}T^2}{\mathrm{d}I_{\nu}/\mathrm{d}T} \hat{n} \cdot \boldsymbol{v} \right] \Delta \Theta(\hat{n}) \\ &= \left(1 + \left[x \coth(x/2) - 1 \right] \hat{n} \cdot \boldsymbol{v} \right) \Delta \Theta(\hat{n}), \end{split}$$

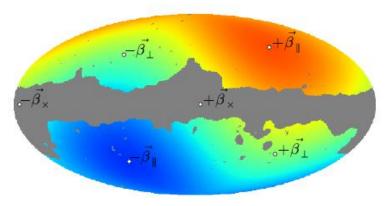
 $x \equiv h\nu/k_bT$



Aberration $\widehat{\boldsymbol{n}} \rightarrow \widehat{\boldsymbol{n}} + \nabla(\widehat{\boldsymbol{n}} \cdot \boldsymbol{v})$

- just like a dipole lensing convergence

known dipole amplitude and direction

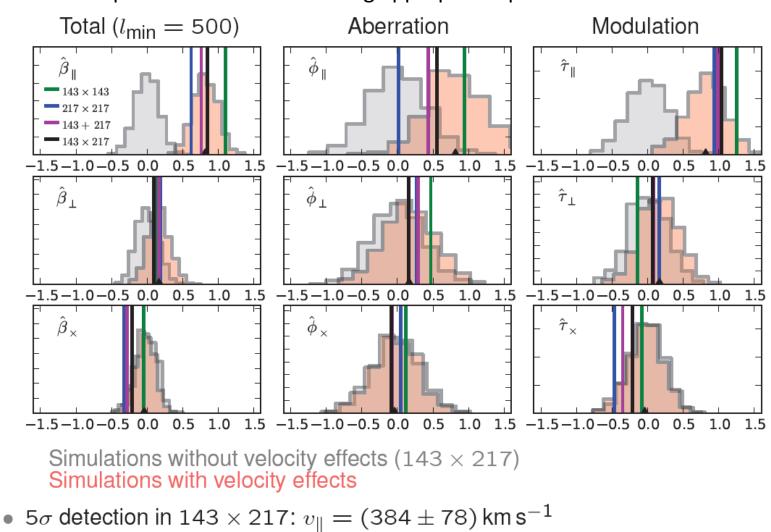


$$\frac{v}{c} \approx 1.23 \times 10^{-3}$$

Modulation $f = \left(x \coth \frac{\left(\frac{x}{2}\right)}{2} - 1\right) \widehat{\boldsymbol{n}} \cdot \boldsymbol{v} \equiv b_{\nu} \widehat{\boldsymbol{n}} \cdot \boldsymbol{v}$			
	-	Approx boost factor $b_{\nu} = x \coth\left(\frac{x}{2}\right)/2 - 1$	Map modulation amplitude
Planck maps:	100 GHz	1.5	0.18%
	143 GHz	2	0.24%
	217 GHz	3	0.37%
	353 GHz	5	0.64%
	545 GHz	9	1.1%
	857 GHz	14	1.7%

Use 143, 217 only (with dust subtraction from 857)

Note: SMICA maps are a complicated mixture; modulation effect not currently included in FFP6 sims



Dipole kinematic effect using appropriate quadratic estimators

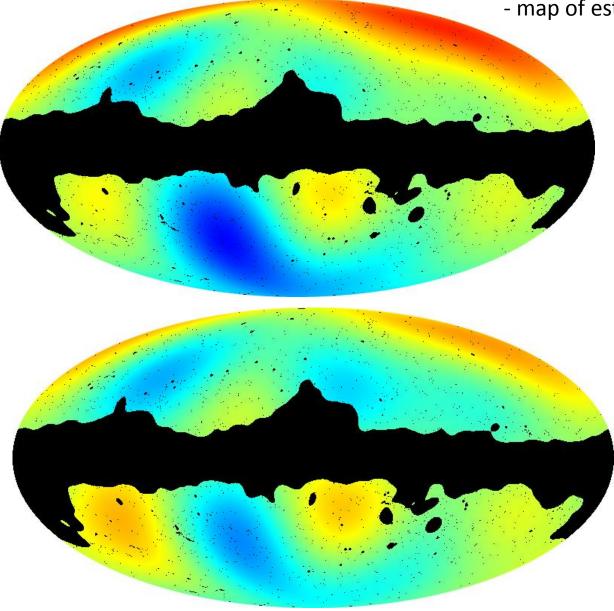
• Foreground issue at 217 \times 217 in $\widehat{\beta}_{\times}$ (driven by $\widehat{\tau}_{\times}$)?

Note: not included in parameter analysis

 $\theta_* = (1.04148 \pm 0.00066) \times 10^{-2} = 0.596724^{\circ} \pm 0.00038^{\circ}$

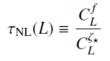
- bias due to aberration average over mask $\, \sim \, 0.25 \sigma$

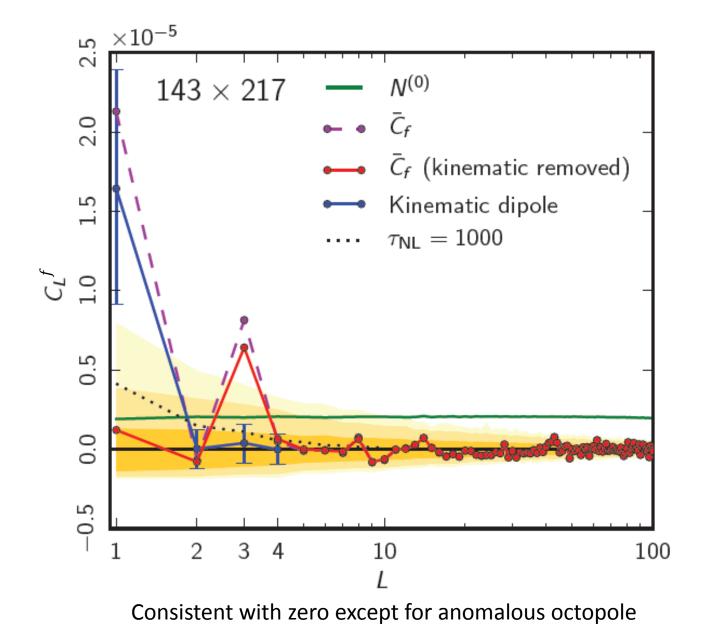
143x217 modulation reconstruction ($L \leq 5$) - map of estimated modulation field f



Kinematics not subtracted

Kinematics subtracted in mean field from sims



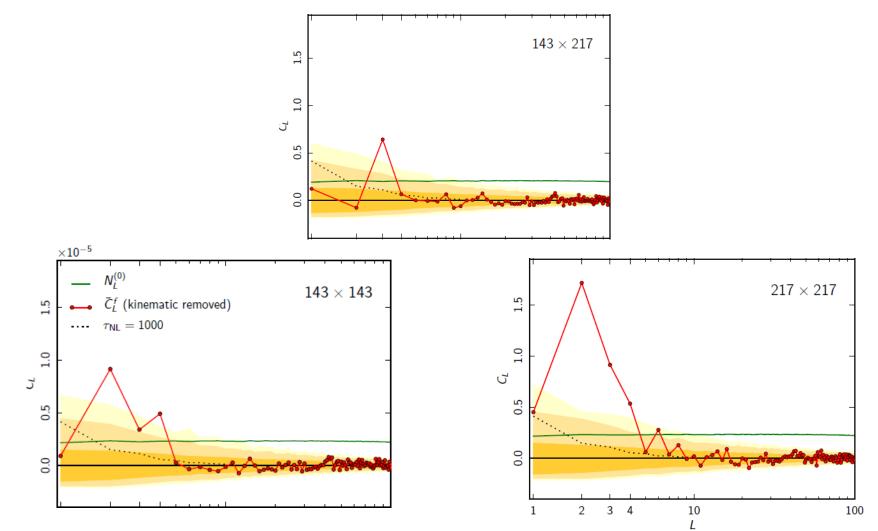


Anomalous signal seems to be mostly due to 217

- may be related to β_{\times} (frequency dependence from dust?)

Octopole signal varies between frequencies:

(large auto-quadrupole expected from noise bias)



Planck τ_{NL} trispectrum constraint

Estimator result $\hat{\tau}_{NL} = 442$

Gaussian simulations:

 $-452 < \hat{\tau}_{\rm NL} < 835$ at 95% CL ($\sigma_{\tau_{\rm NL}} \approx 335$)

Consistent with Gaussian null hypothesis (octopole has small weight)

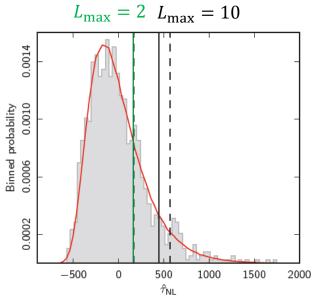
Note: signal most L<5 - small number of modes

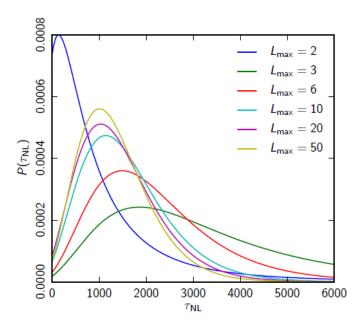
Skewed distribution

Upper limits weaker than you might expect

Conservative upper limit, allowing octopole to be physical using Bayesian posterior

 $\tau_{\rm NL} < 2800$ at 95% CL





Scale-dependent dipole modulation and power asymmetries

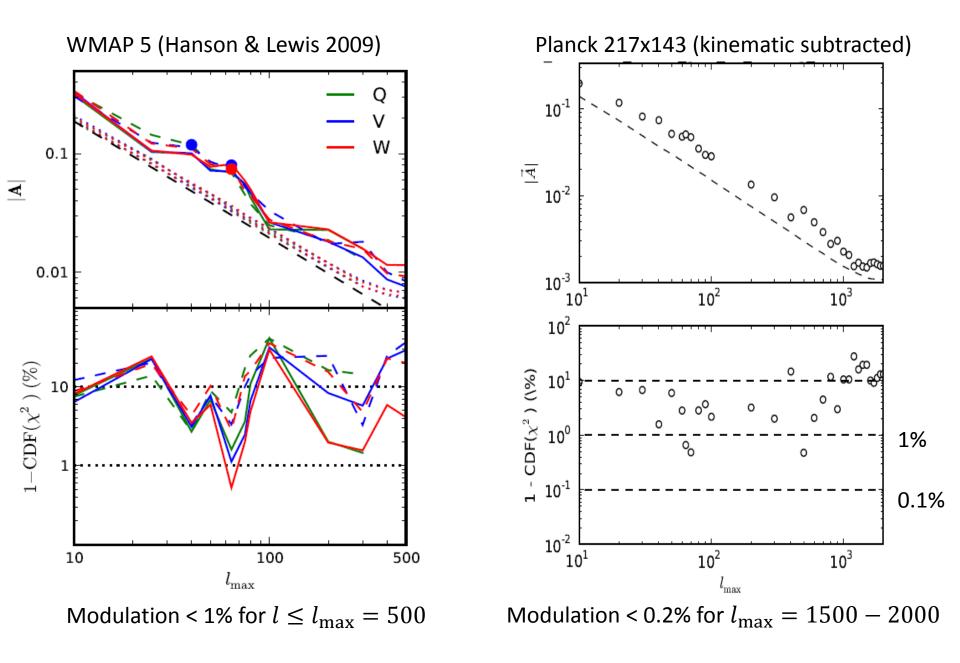
Full analysis suggests no non-kinematic dipole power asymmetry

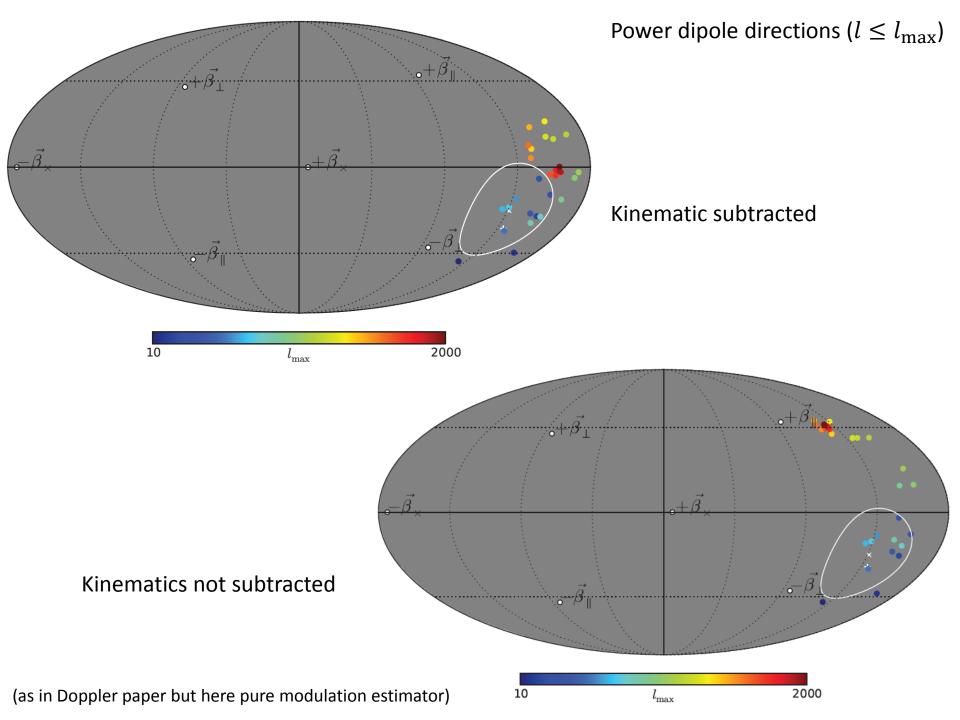
Can also look for scale-dependent effect: filter range of scales used in quadratic estimator

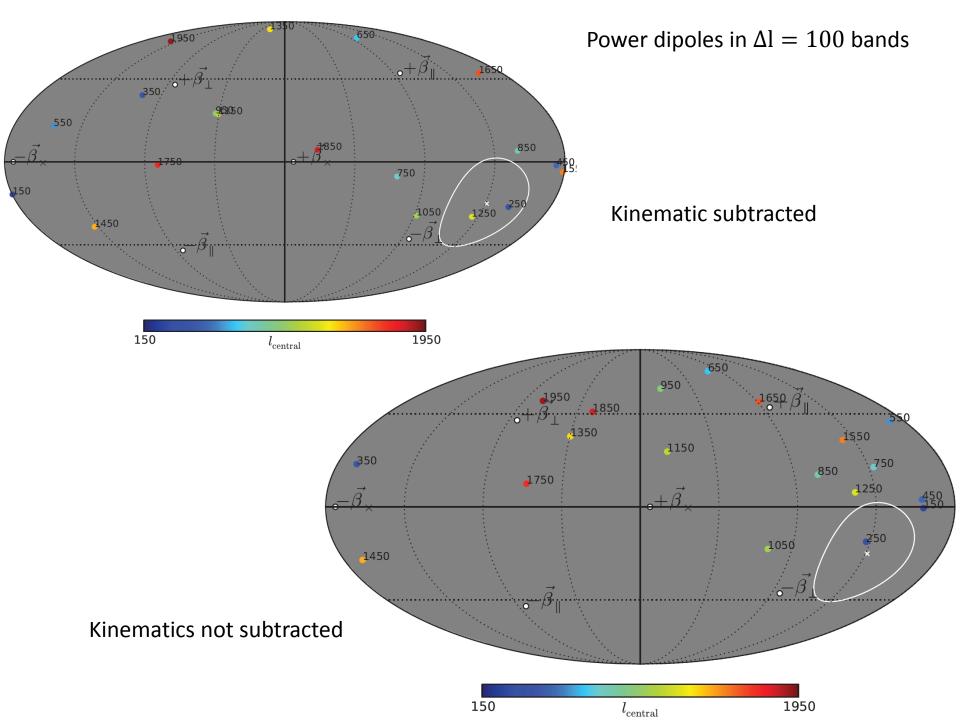
$$\tilde{h}_{lm}^{f} = \int d\Omega Y_{lm}^{*} \left[\sum_{l_{1}m_{1}}^{l_{\max}} \bar{\Theta}_{l_{1}m_{1}} Y_{l_{1}m_{1}} \right] \left[\sum_{l_{2}m_{2}}^{l_{\max}} C_{l_{2}} \bar{\Theta}_{l_{2}m_{2}} Y_{l_{2}m_{2}} \right]$$

(new results, thanks Duncan)

Power modulation dipole amplitude for $l \leq l_{max}$







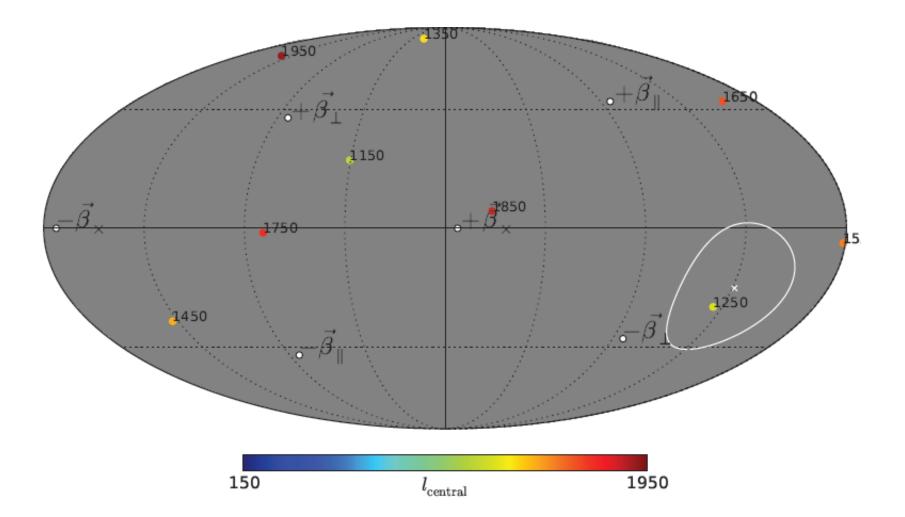
Conclusions

- 5σ detection of kinematic dipole effects in *Planck* maps
- Large-scale modulation power "nearly" consistent with zero after kinematic subtraction (foreground octopole?)
- Conservative limit $\tau_{NL} < 2800 \ (95\% \text{ CL})$
- Power at $l \le 400$ consistent with WMAP and previous analyses (must be maps looks the same)
- Dipole power modulations at low L do not persist to high L after kinematic subtraction: |f| < 0.2% at $l_{max} = 2000$. (but possible foreground issues, ongoing work..)
- Kinematic effects currently not included in *Planck* isotropy paper results, e.g. hemisphere and patch anisotropy constraints. Different model, mask, maps, filtering... so not directly comparable; ongoing work...

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

Planck is a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.

$l \geq 1100$ only



SMICA (sims subtract aberration but not modulation)

