CMB Lensing and Delensing

-0.0016 0.0016

Antony Lewis

http://cosmologist.info/

Evolution of the universe

Hu & White, Sci. Am., 290 44 (2004)

0th order (uniform 2.726K) + 1st order perturbations (anisotropies)

Perturbation evolution

Perturbations: Last scattering surface

Perturbations: End of inflation

Observed CMB power spectrum

Observations

Constrain theory of early universe + evolution parameters and geometry

E and B polarization

Trace free gradient: E polarization

e.g.

Curl: B polarization

E-mode polarization

+ ACT/SPT/ACTpol/SPTpol ground-based in progress Forthcoming ground-based: Simons Observatory, S4

and cross-correlation with temperature

Weak lensing of the CMB perturbations

Lens remapping approximation: deflection angle α

$$X^{\mathrm{len}}(\boldsymbol{n}) = X^{\mathrm{unl}}(\boldsymbol{n} + \boldsymbol{\alpha}(\boldsymbol{n}))$$

Deflection related to shear γ_i , convergence κ , and rotation ω

$$A_{ij} \equiv \delta_{ij} + \frac{\partial}{\partial \theta_i} \alpha_j = \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 + \omega \\ -\gamma_2 - \omega & 1 - \kappa + \gamma_1 \end{pmatrix}$$

Rotation $\omega = 0$ from scalar perturbations in linear perturbation theory

$$\omega = 0 \Rightarrow \alpha = \nabla \psi$$

Deflection angle power spectrum

On small scales (Limber approx.
$$k\chi \sim l$$
)
$$C_l^{\psi} \approx \frac{8\pi^2}{l^3} \int_0^{\chi_*} \chi \mathrm{d}\chi \, \mathcal{P}_{\Psi}(l/\chi; \eta_0 - \chi) \left(\frac{\chi_* - \chi}{\chi_* \chi}\right)^2$$

Deflections O(10⁻³), but coherent on degree scales \rightarrow important!

Local effect of lensing on the power spectrum

Averaged over the sky, lensing smooths out the power spectrum

Effect on TE and EE polarization spectra

Polarization power spectra

Outline

- 1. How can we reconstruct the lensing?
 - gives a powerful cosmological probe
 (z~2 peak; constraints on LCDM, massive neutrinos, etc.)
- 2. Can we then delens?
 - unsmooth the power spectra, clean the lensing B modes
- 3. How well can we delens in future?

Lensing reconstruction (concept)

Measure spatial variations in magnification and shear

Use assumed unlensed spectrum, and unlensed statistical isotropy

Lensing Reconstruction – Quadratic Estimators

Fixed lenses introduce statistically-anisotropic correlations:

$$\Delta \langle X_{l_1 m_1} Y_{l_2 m_2} \rangle_{\text{CMB}} = \sum_{LM} (-1)^M \begin{pmatrix} l_1 & l_2 & L \\ m_1 & m_2 & -M \end{pmatrix} \mathcal{W}_{l_1 l_2 L}^{XY} \phi_{LM}$$

Noisy lensing estimates from quadratic CMB combinations:

$$\hat{\phi}_{LM} = \frac{(-1)^M}{2} \frac{1}{\mathcal{R}_L^{XY}} \sum_{l_1 m_1, l_2 m_2} \begin{pmatrix} l_1 & l_2 & L \\ m_1 & m_2 & -M \end{pmatrix} \begin{bmatrix} \mathcal{W}_{l_1 l_2 L}^{XY} \end{bmatrix}^* \bar{X}_{l_1 m_1} \bar{Y}_{l_2 m_2}$$

$$\text{Normalisation} \qquad \text{Known lensing-induced correlations} \qquad \text{Inverse-variance-weighted CMB fields}$$

Planck Lensing 2018 arXiv:1807.06210

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada.

Planck is a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.

Planck lensing reconstruction noise

(instrumental noise + cosmic variance of unlensed T/E)

True simulation input

Simulated Planck lensing reconstruction

TT

Polarization

MV

Individual estimators

Lensing LCDM parameters

CMB lensing best measures $\sim \sigma_8 \Omega_m^{0.25}$ = 0.589 \pm 0.020.

"Lensing-only" priors: $\Omega_{\rm b} {\rm h}^2 = 0.0222 \pm 0.0005,$ $n_s = 0.96 \pm 0.02$ 0.4 < h < 1

$$H_0 = 67.9^{+1.2}_{-1.3} \text{ km s}^{-1} \text{Mpc}^{-1},$$

$$\sigma_8 = 0.811 \pm 0.019,$$

$$\Omega_m = 0.303^{+0.016}_{-0.018},$$

68 %, lensing+BAO

DES lensing from Troxel et al. (DES Collaboration 2017, 10 nuisance parameters marginalized)

Improving lensing reconstruction using Cosmic Infrared Background (CIB)

Use Planck GNILC 353, 545 GHz CIB maps as additional tracer of lensing potential

Delensing

Lensing: $X^{\text{len}}(\mathbf{n}) = X^{\text{unl}}(\mathbf{n} + \boldsymbol{\alpha}(\mathbf{n}))$

Delensing: $X^{\text{delen}}(\mathbf{n}) \approx X^{\text{len}}(\mathbf{n} - \boldsymbol{\alpha}(\mathbf{n}))$

Delensing $(A_L = 1)$

Delensing $(A_L = 0.5)$

Delensing $(A_L = 0.1)$

Delensing $(A_L = 0.01)$

Planck B-mode delensing proof of principle

(limited delensing efficiency from Planck due to E noise)

Delensing: Peak Sharpening – 40% of smoothing effect removed with MV+CIB

$$\Delta \hat{C}_{\ell, \text{debias}} \equiv \hat{C}_{\ell}^{\text{del}} - \hat{C}_{\ell}^{\text{dat}} - B_{\ell}^{\text{Gauss}} - B_{\ell}^{\text{Noise}} + B_{\ell}^{\text{CMB}}$$

How well can we delens in principle?

Standard lensing remapping approximation:

$$\tilde{P}_{ab}(\widehat{\boldsymbol{n}}) = P_{ab}(\widehat{\boldsymbol{n}} + \nabla \phi)$$

Perfect lensing reconstruction, hence delensing(?), if only 2 d.o.f.

Hirata & Seljak 2003

Can we construct an "optimal" lensing reconstruction algorithm?

YES, in sense of maximum a posteriori estimators:

- Hirata & Seljak 2003: iterative estimator for idealized full-sky (astro-ph/0306354) (with some approximations)
- Carron & Lewis 2017: public code that can be used in practice (1704.08230) (efficient handling of anisotropic noise, beams, sky cuts..)

LensIt:

https://github.com/carronj/LensIt (Julien Carron)

1. Deflection not pure gradient: additional degree of freedom from post-Born field rotation/curl shear

~2.5% of B mode amplitude from rotation (effect of post-Born polarization rotation is negligible)

2. Differences between unlensed and lensed last scattering

$$X^{\mathrm{len}}(\boldsymbol{n}) = X^{\mathrm{unl}}(\boldsymbol{n} + \boldsymbol{\alpha}(\boldsymbol{n}))$$

Lensed quadrupole: remapping approximation

2. Differences between unlensed and lensed last scattering

Lensed quadrupole: with emission angle *d* not the same as the unlensed CMB quadrupole: observe new modes

Fermat's principle: perturbed emission angle orthogonal to perturbed last scattering surface

Must also account for time delay perturbing last scattering

Total emission+time delay effect dominates on large scales

Lewis, Hall, Challinor arXiv:1706.02673

Emission angle+time delay: $\Delta r \sim 2 \times 10^{-6}$

Conclusions

- CMB lensing starting to be a powerful cosmological probe
 - high significance measurement with Planck
 - complementary to galaxy lensing
- Delensing works! Planck 2018 internal delensing:
 - High significance detection of peak sharpening (T/E)
 - First detection of B-mode delensing
 - Improved delensing using Planck CIB
- Low noise → can delens nearly perfectly (Hirata and Seljak)
- Optimal and practical iterative method for lensing reconstruction now exists (LensIt code).
- In principle limit? Emission angle+time delay: $\Delta r \sim 2 \times 10^{-6}$
 - Reionization signal larger, but no problem for foreseeable future (potentially much larger problems in practice foregrounds etc)