CMB Science Goals

Antony Lewis

http://cosmologist.info/

LCDM

 Higher precision parameters precision consistency tests

probably not exciting unless ongoing inconsistency with other data (H0?)

- Measure τ better: integrated constraint on reionization models + small amount of shape information from EE shape
- Precision SZ/kSZ: properties of hot gas and star formation, patchiness of reionization, cluster physics. Cluster catalogue at high redshift.
- Mapping. LOTS more clean nearly-linear modes.
 - E-modes to $\ell \gg 1000$
 - lensing resolved up to $L \sim 2000$
 - SZ

Surely very good value compared to cost per clean mode in LSS/21cm.

Lensing deflection (E map): WF Planck sim

Lensing deflection (E map): Full signal sim

New signals in LCDM

- Spectral distortions in monopole:
 - $\mu \sim 10^{-8}$ from energy injection from damping of sound waves (challenging for $n_S \sim {\rm const}$ with foregrounds)
 - Lines from recombination and metals
 - y distortion
- Spectral distortions in anisotropies
 - Rayleigh scattering from recombination (big signal if have $\nu \gg 300$ Ghz, LiteBird, CCAT'? ...)
- Non-Gaussianity from patchy reionization
- Lensing curl
- etc...

Gravitational waves: B-modes

- Lyth bound large $\Delta \phi$ symmetries
 - conservatively $r>0.01\Rightarrow \Delta\phi>M_P$
- $r \sim O(0.001)$ target: test if $r \sim O\left(\frac{1}{N^2}\right)$
 - need delensing
- Test specific predictive models $(R^2 ...)$
- Testing consistency relation difficult

Limits on delensing

Optimal internal reconstruction in principle only limited by noise down to $r \sim 10^{-4} - 10^{-6}$

But: residual foregrounds in B may limit nearer $r \sim 10^{-3}$ depending on frequencies etc.

Lensing B still important source of noise for $r \sim 10^{-3}$: delensing required

Note: testing slow-roll from expected level of n_s running is very difficult

Neutrino mass

S4 Science Book

Measure $\sum m_{\nu}$

Inverted or normal hierarchy?

(inverted already disfavoured $(2 - 3\sigma)$ by oscillations (NoVA/SuperK. e.g. 1804.09678))

(+ lepton numbers/CP violation..)

normal hierarchy (NH) inverted hierarchy (IH) m^2 ν_3 ν_2 ν_2 ν_3 ν_4 ν_4 ν_5 ν_6 ν_8 ν_8

 $\sum m_{\nu} > 0.058 \text{ eV}$

 $\Delta m_{\rm sol}^2$

 $\nu_{\mu} \ \nu_{\tau}$

 $\sum m_{\nu} > 0.1 \text{ eV}$

Most modes on small scales

Amplitude relative to TT/TE/EE partly degenerate with au

+ Clusters Can also be done by galaxy surveys, but very different systematics

Right sterile relics: constraints on $N_{\rm eff}$

Possible specific targets: (want $\sigma(N_{\rm eff}) > 2\Delta N_{\rm eff}$)

Axions: $\Delta N_{\rm eff} = 0.027 N_a$

Gravitino: $\Delta N_{\rm eff} = 0.047 - 0.057$ (rule out all low-scale SUSY?)

S4 Science Book

Need large f_{skv} to beat down cosmic variance

Note: Y_p degeneracy and BBN uncertaintiy of ~0.001 (bottle/beam τ_n difference) is about $\Delta N_{\rm eff} \sim 0.01$

Dark energy

Very weak from CMB power spectrum.

Weak from CMB lensing, but can improve joint constraints.

SZ Clusters:

N(M): probe of cosmology, NG, and dark energy

SZ good probe at z > 1, complementary to DES, LSST etc.

Want small beam

CMB lensing for mass calibration of high-z clusters

e.g. high-sensitivity, high-resolution CMB can calibrate mass of 1000 stacked clusters to a few percent

Figure 53. Mass uncertainty from CMB halo lensing measurements stacking 10^3 halos of mass $M_{180\rho_{m_0}} \approx 5 \times 10^{14} M_{\odot}$, as a function of instrumental noise and varying instrumental resolution.

Other models...

- Dark matter-baryon scattering
- Axions (ultra-light, cold, fluctuating in inflation,...)
- Strings, magnetic fields...

Primordial non-Gaussianity

- Standard shapes only shrink sigma by 2-3
 - limited by cosmic variance on large modes
 - modes smaller than recombination width are line-of-sight averaged (i.e. Gaussianised)
- Worth having, no obvious targets possible at high significance (though any detection of local $f_{NL} \neq 0$ would rule out almost all single field inflation models)
- Could test non-standard scale dependence/extended shapes
- Can also look for tensor non-Gaussianity (but no motivated target in reach)

New physics from distortions

- Probe unconstrained scales: $50 \mathrm{Mpc^{-1}} < k < 10^4 \mathrm{Mpc^{-1}}$
 - test slow-roll inflation

- New decays, annihilations, primordial black holes, etc...
- Non-Gaussianity from spatial variation in μ (hard)

Indirect science case

- Using CMB, CMB lensing and clusters to improve joint constraints with other data
 - cross-correlations
 - measuring bias
 - reducing systematics
 - cross-calibration

CMB lensing to calibrate shear for galaxy lensing

Galaxy lensing surveys measure (roughly) galaxy ellipticity e_g . Hard to relate directly to lensing shear $\gamma_{\rm lens}$.

$$e_{\rm g} \sim (1+m)\gamma_{\rm lens}$$

m could mimic different dark energy models.

Cross-correlation with CMB lensing can measure m

Valuable for EUCLID, WFIRST, LSST, etc.

more robust prior-independent constraints on dark energy

e.g. S4 to calibrate LSST

Schaan et al. arXiv: 1607.01761

CMB lensing + LSS for f_{NL} from scale-dependent bias

Summary

- Lots of new nearly-linear modes easily accessible
 - map polarization at recombination and integrated matter of the universe
- Good targets for r-modes
 - separate qualitative classes of inflation
- Motivated targets hard to reach at high significance for many other parameters $(N_{\rm eff}, m_{\nu}, \mu)$ but may be doable
- Some new sure-fire signals are in reach: kSZ/SZ/Rayleigh
- Distortions probe wide-open parameter space
- Lots of scope for clever joint analyses